• 제목/요약/키워드: injection modeling

검색결과 298건 처리시간 0.026초

Effects of Intraperitoneal N-methyl-D-aspartate (NMDA) Administration on Nociceptive/Repetitive Behaviors in Juvenile Mice

  • Kim, Seonmin;Kim, Do Gyeong;Gonzales, Edson luck;Mabunga, Darine Froy N.;Shin, Dongpil;Jeon, Se Jin;Shin, Chan Young;Ahn, TaeJin;Kwon, Kyoung Ja
    • Biomolecules & Therapeutics
    • /
    • 제27권2호
    • /
    • pp.168-177
    • /
    • 2019
  • Dysregulation of excitatory neurotransmission has been implicated in the pathogenesis of neuropsychiatric disorders. Pharmacological inhibition of N-methyl-D-aspartate (NMDA) receptors is widely used to model neurobehavioral pathologies and underlying mechanisms. There is ample evidence that overstimulation of NMDA-dependent neurotransmission may induce neurobehavioral abnormalities, such as repetitive behaviors and hypersensitization to nociception and cognitive disruption, pharmacological modeling using NMDA has been limited due to the induction of neurotoxicity and blood brain barrier breakdown, especially in young animals. In this study, we examined the effects of intraperitoneal NMDA-administration on nociceptive and repetitive behaviors in ICR mice. Intraperitoneal injection of NMDA induced repetitive grooming and tail biting/licking behaviors in a dose- and age-dependent manner. Nociceptive and repetitive behaviors were more prominent in juvenile mice than adult mice. We did not observe extensive blood brain barrier breakdown or neuronal cell death after peritoneal injection of NMDA, indicating limited neurotoxic effects despite a significant increase in NMDA concentration in the cerebrospinal fluid. These findings suggest that the observed behavioral changes were not mediated by general NMDA toxicity. In the hot plate test, we found that the latency of paw licking and jumping decreased in the NMDA-exposed mice especially in the 75 mg/kg group, suggesting increased nociceptive sensitivity in NMDA-treated animals. Repetitive behaviors and increased pain sensitivity are often comorbid in psychiatric disorders (e.g., autism spectrum disorder). Therefore, the behavioral characteristics of intraperitoneal NMDA-administered mice described herein may be valuable for studying the mechanisms underlying relevant disorders and screening candidate therapeutic molecules.

Thermo-fluid engineering in deep geothermal energy

  • 김영원
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.84.1-84.1
    • /
    • 2015
  • Recent years in particular in Korea see intensive interests in a deep geothermal engineering and its application in different uses as far as from direct uses to power generation sectors, that are achieved by harnessing hot energy sources from the earth. For instance widespread interest has been generated because the geothermal energy is the source that one extracts it for more than 20 hours per day and for about 30 years of an operation of the plant, which enables to give base load as for heating as well as an electric generation. In retrospect, shallow geothermal energy using heat pumps is commonplace in Korea while the deep geothermal is in the early stage of the development. Geothermal energies in view of the way of extracting heat are mainly categorized into several types such as a single well system, a hydrothermal system, an enhanced geothermal system (EGS) etc. In this talk, this speaker focuses on the thermo-fluid engineering of the single well system by introducing the modeling in order to harness hot fluid that is thermally balanced with the fluid of an injection well, which provides a challenge to assess the life time of the well. To avoid the loss of the temperature in producing the hot fluid, a specialized pipe or a borehole heat exchanger has been designed, and its concept is introduced. On the other hand, a binary system or an organic Rankine cycle, which provides the methodology to convert the heat into an electricity, is briefly introduced. Some experimental results of the binary system which has been constructed in our lab will be presented. Lastly as for the future direction, some comments for the industrialization of the deep geothermal energy in this country will be discussed.

  • PDF

연소로 열유동 해석 방식과 결과 분석에 대한 고찰;화격자식 소각로의 사례 (Discussion on the Practical Use of CFD for Furnaces;A Case of Grate Type Waste Incinerators)

  • 류창국;최상민
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2002년도 제24회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.85-94
    • /
    • 2002
  • Computational flow dynamics(CFD) has been frequently applied to the waste incinerators to understand the flow performance for various design and operating parameters. Though it needs many simplifications and complicated flow models, the reasonability of its results is not fully evaluated. For example, the inlet condition is calculated from an arbitrarily assumed properties of combustion gas release from the waste bed, since the combustion in the bed is difficult to be predicted. In this study, the computational modeling and calculation procedures of CFD for the grate type waste incinerator were evaluated using comparative simulations. Though the assumption method on the generation of the combustion gas directly affected the temperature and gas species concentrations, the overall flow pattern was dominated by the secondary air jets. The gaseous reaction could be included by assuming the release of the products of incomplete combusion from the bed. However, the reaction effficiency cannot not be directly evaluated from the species concentration, since it is not possible to simulate the actual co-existence of fuel rich or oxygen rich puffs over the bed. In predicting the turbulence, the higher order model, such as Reynolds stress model, gave difference shape of local recirculation zones, but similar results was acquired from the standard $k-{\varepsilon}$ model. Introducing radiation model was required for accurate temperature prediction, but it also caused heat imbalance due to the fixed temperature of the inlet, i.e. the waste bed. Thus, the computational modeling procedures on incinerators and the analysis of the predicted results should be progressed carefully. Though not validated experimentally, current simulation method is capable of comparative evaluation on the flow-related parameters such as the furnace shape and secondary air injection using identical inlet conditions. Quantitative analysis using measures of the residence time and mixing is essential to compare the flow performance efficiently.

  • PDF

Modeling of Hydrodynamic Processes at a Large Leak of Water into Sodium in the Fast Reactor Coolant Circuit

  • Perevoznikov, Sergey;Shvetsov, Yuriy;Kamayev, Aleksey;Pakhomov, Ilia;Borisov, Viacheslav;Pazin, Gennadiy;Mirzeabasov, Oleg;Korzun, Olga
    • Nuclear Engineering and Technology
    • /
    • 제48권5호
    • /
    • pp.1162-1173
    • /
    • 2016
  • In this paper, we describe a physicomathematical model of the processes that occur in a sodium circuit with a variable flow cross-section in the case of a water leak into sodium. The application area for this technique includes the possibility of analyzing consequences of this leak as applied to sodium-water steam generators in fast neutron reactors. Hydrodynamic processes that occur in sodium circuits in the event of a water leak are described within the framework of a one-dimensional thermally nonequilibrium three-component gas-liquid flow model (sodium-hydrogen-sodium hydroxide). Consideration is given to the results of a mathematical modeling of experiments involving steam injection into the sodium loop of a circulation test facility. That was done by means of the computer code in which the proposed model had been implemented.

전산유체역학을 이용한 반건식 반응기의 운전조건에 따른 산성가스제거효율에 관한연구 (A study of the removal efficiency of acidic gas at various operating conditions using Computation Fluid Dynamics)

  • 이건주
    • 유기물자원화
    • /
    • 제19권1호
    • /
    • pp.93-101
    • /
    • 2011
  • 본 연구는 소각 시스템에 적용되는 반건식 반응기의 모델링 연구를 수행 하였다. 전산유체역학(CFD)을 이용하여 반건식 반응기에서 속도분포 온도분포를 조사하여 반응기의 최적 운전 조건을 조사하였다. 본 모델에 사용된 반응기의 직경은 3 m 이며 높이는 9 m 이다. 반응기로 유입되는 연소가스의 양은 $6,125Nm^3/hr$ 이며 반응기 유입 가스의 온도는 493K 이다. 반응기에 유입되는 소석회 양은 151 kg/hr 이다. 반응기의 입구 형상이 변하면 반응기 내의 온도가 변하며 반응기 내의 가스속도는 0.48 m/sec 에서 1.17m/sec 였으며, 반응기 출구의 가스속도는 6.9에서 7.42m/sec 였다. 모델링 결과에 의하면 반응기 내의 평균 가스 속도와 출구에서의 평균가스 속도는 각각 0.489 m/sec와 7.424 m/sec 였으며, 반응기 출구 온도는 448 K 였다.

Novel nomogram-based integrated gonadotropin therapy individualization in in vitro fertilization/intracytoplasmic sperm injection: A modeling approach

  • Ebid, Abdel Hameed IM;Motaleb, Sara M Abdel;Mostafa, Mahmoud I;Soliman, Mahmoud MA
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제48권2호
    • /
    • pp.163-173
    • /
    • 2021
  • Objective: This study aimed to characterize a validated model for predicting oocyte retrieval in controlled ovarian stimulation (COS) and to construct model-based nomograms for assistance in clinical decision-making regarding the gonadotropin protocol and dose. Methods: This observational, retrospective, cohort study included 636 women with primary unexplained infertility and a normal menstrual cycle who were attempting assisted reproductive therapy for the first time. The enrolled women were split into an index group (n=497) for model building and a validation group (n=139). The primary outcome was absolute oocyte count. The dose-response relationship was tested using modified Poisson, negative binomial, hybrid Poisson-Emax, and linear models. The validation group was similarly analyzed, and its results were compared to that of the index group. Results: The Poisson model with the log-link function demonstrated superior predictive performance and precision (Akaike information criterion, 2,704; λ=8.27; relative standard error (λ)=2.02%). The covariate analysis included women's age (p<0.001), antral follicle count (p<0.001), basal follicle-stimulating hormone level (p<0.001), gonadotropin dose (p=0.042), and protocol type (p=0.002 and p<0.001 for short and antagonist protocols, respectively). The estimates from 500 bootstrap samples were close to those of the original model. The validation group showed model assessment metrics comparable to the index model. Based on the fitted model, a static nomogram was built to improve visualization. In addition, a dynamic electronic tool was created for convenience of use. Conclusion: Based on our validated model, nomograms were constructed to help clinicians individualize the stimulation protocol and gonadotropin doses in COS cycles.

초음파 접합 공정을 합성한 자동차용 램프 생산시스템 제어에 관한 연구 (A Study for Automotive Lamp Manufacturing System Control Composing Ultra melting Process)

  • 이일권;국창호;김승철;김기진;한기봉
    • 한국가스학회지
    • /
    • 제18권1호
    • /
    • pp.46-51
    • /
    • 2014
  • 이 논문의 목적은 자동차 램프의 초음파 접합 공정을 합성한 자동차 램프 생산시스템에 관한 연구이다. 램프어셈블리를 생산할 때 독립된 단순 공정에 의해 사출과 초음파 접합, 항온풀림, 조립과 포장을 하던 분리된 작업공정을 원스텝(One-step) 일관공정으로 합성하여 초음파 접합시 발생되는 미세한 발생가스와 소음에 대하여 작업자에게 미치는 영향을 최소화하였다. 또한, 합성 공정에 의한 에너지 저감과 이를 자동공정에 의해 생산함으로써 생산 효율을 극대화하였다. 이 방식은 제어시스템의 타당성을 검토하기 위해 수학적 모델링을 하였고, 이들 수식을 이용하여 플랜트의 전달함수와 필요에 따라 bode선도를 이용하여 안정성과 적합한 제어기를 선정하였다. 이 연구에서 사출 물을 뒤집기 위한 $180^{\circ}$ 회전 제어장치는 중력의 영향으로 비선형 항 $M_{eq}\;lcos{\theta}(t)$이 나타났고, 이를 해결하기위해 피드포워드 제어기법을 적용하여 시스템의 선형화 및 안정화를 확보하였다.

Lower the Detection Limits of Accelerator Mass Spectrometry

  • ;송종한;김준곤;김재열;오종주;김종찬
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.243-244
    • /
    • 2013
  • Over the past 15 years, several groups have incorporated radio-frequency quadrupole (RFQ) based instruments before the accelerator in accelerator mass spectrometry (AMS) systems for ion-gas interactions at low kinetic energy (<40 eV). Most AMS systems arebased on a tandem accelerator, which requires negative ions at injection. Typically, AMS sensitivity abundance ratios for radioactive-to-stable isotope are limited to Xr/Xs >10^-15, and the range of isotopes that can be analyzed is limited because of theneed to produce rather large negative ion beams and the presence of atomic isobaric interferences after stripping. The potential of using low-kinetic energy ion-gas interactions for isobar suppression before the accelerator has been demonstrated for several negative ion isobar systems with a prototype RFQ system incorporated into the AMS system at IsoTrace Laboratory, Canada (Ontario, Toronto). Requisite for any such RFQ system applied to very rare isotope analysis is large transmission of the analyte ion. This requires proper phase-space matching between the RFQ acceptance and the ion beam phase space (e.g. 35 keV, ${\varphi}3mm$, +-35 mrad), and the ability to control the average ion energy during interactions with the gas. A segmented RFQ instrument is currently being designed at Korea Institute for Science and Technology (한국과학기술연구원, KIST). It will consist of: a) an initial static voltage electrode deceleration region, to lower the ion energy from 35 keV down to <40 eV at injection into the first RFQ segment; b) the segmented quadrupole ion-gas interaction region; c) a static voltage electrode re-acceleration region for ion injection into a tandem accelerator. Design considerations and modeling will be discussed. This system should greatly lower the detection limits of the 6 MV AMS system currently being commissioned at KIST. As an example, current detection sensitivity of 41Ca/Ca is limited to the order of 10^-15 while the 41Ca/Ca abundance in modern samples is typically 41Ca/Ca~10^-14 - 10^-15. The major atomic isobaric interference in AMS is 41K. Proof-of-principal work at IsoTrace Lab. has demonstrated that a properly designed system can achieve a relative suppression of KF3-/41CaF3- >4 orders of magnitude while maintaining very high transmission of the 41CaF3- ion. This would lower the 41Ca detection limits of the KIST AMS system to at least 41Ca/Ca~10^-19. As Ca is found in bones and shells, this would potentially allow direct dating of valuable anthropological archives and archives relevant to our understanding of the most pronounced climate change events over the past million years that cannot be directly dated with the presently accessible isotopes.

  • PDF

CO2 지중저장에 따른 장기분지 내 단층안정성 기초해석 (Numerical Analysis of Fault Stability in Janggi Basin for Geological CO2 Storage)

  • 박정욱;김한나;이항복;박찬희;신영재
    • 터널과지하공간
    • /
    • 제33권5호
    • /
    • pp.399-413
    • /
    • 2023
  • 본 연구에서는 TOUGH-FLAC 연동해석 기법을 사용하여 장기분지 유망 저장소 부지에서의 CO2 주입을 수치적으로 모델링하고, 주변 지층과 단층에 야기되는 수리-역학적 안정성을 검토하였다. 대상부지의 현장조사와 3D 지질모델을 기반으로 3년간 32,850톤의 CO2 주입을 가정하여 시뮬레이션을 수행하였다. 저류층의 투수계수에 따른 CO2 플럼의 유동 경로를 분석한 결과, 투수계수를 10-14 m2로 가정한 경우 방사형 유동을 보이며 2년 9개월 경과 시 단층에 도달하는 것으로 나타났다. 투수계수를 10-13 m2로 가정한 경우에는 저류층을 따라 서쪽 방향의 유동이 우세하게 나타났으며 단층 방향으로의 유동은 거의 발생하지 않았다. 주입공 주변의 압력 변화는 3년 동안 0.6 MPa 이하로, 지층 및 단층의 역학적 안정성에 미치는 영향은 미미한 것으로 분석되었다.

Eulerian Particle Flamelet Modeling for Combustion Processes of Bluff-Body Stabilized Methanol-Air Turbulent Nonpremixed Flames

  • Kim, Seong-Ku;Kang, Sung-Mo;Kim, Yong-Mo
    • Journal of Mechanical Science and Technology
    • /
    • 제20권9호
    • /
    • pp.1459-1474
    • /
    • 2006
  • The present study is focused on the development of the RIF (Representative Interactive Flamelet) model which can overcome the shortcomings of conventional approach based on the steady flamelet library. Due to the ability for interactively describing the transient behaviors of local flame structures with CFD solver, the RIF model can effectively account for the detailed mechanisms of $NO_x$ formation including thermal NO path, prompt and nitrous $NO_x$ formation, and reburning process by hydrocarbon radical without any ad-hoc procedure. The flamelet time of RIFs within a stationary turbulent flame may be thought to be Lagrangian flight time. In context with the RIF approach, this study adopts the Eulerian Particle Flamelet Model (EPFM) with mutiple flamelets which can realistically account for the spatial inhomogeneity of scalar dissipation rate. In order to systematically evaluate the capability of Eulerian particle flamelet model to predict the precise flame structure and NO formation in the multi-dimensional elliptic flames, two methanol bluffbody flames with two different injection velocities are chosen as the validation cases. Numerical results suggest that the present EPFM model has the predicative capability to realistically capture the essential features of flame structure and $NO_x$ formation in the bluff-body stabilized flames.