Browse > Article

Eulerian Particle Flamelet Modeling for Combustion Processes of Bluff-Body Stabilized Methanol-Air Turbulent Nonpremixed Flames  

Kim, Seong-Ku (Korea Aerospace Research Institute)
Kang, Sung-Mo (Department of Mechanical Engineering, Hanyang University)
Kim, Yong-Mo (Department of Mechanical Engineering, Hanyang University)
Publication Information
Journal of Mechanical Science and Technology / v.20, no.9, 2006 , pp. 1459-1474 More about this Journal
Abstract
The present study is focused on the development of the RIF (Representative Interactive Flamelet) model which can overcome the shortcomings of conventional approach based on the steady flamelet library. Due to the ability for interactively describing the transient behaviors of local flame structures with CFD solver, the RIF model can effectively account for the detailed mechanisms of $NO_x$ formation including thermal NO path, prompt and nitrous $NO_x$ formation, and reburning process by hydrocarbon radical without any ad-hoc procedure. The flamelet time of RIFs within a stationary turbulent flame may be thought to be Lagrangian flight time. In context with the RIF approach, this study adopts the Eulerian Particle Flamelet Model (EPFM) with mutiple flamelets which can realistically account for the spatial inhomogeneity of scalar dissipation rate. In order to systematically evaluate the capability of Eulerian particle flamelet model to predict the precise flame structure and NO formation in the multi-dimensional elliptic flames, two methanol bluffbody flames with two different injection velocities are chosen as the validation cases. Numerical results suggest that the present EPFM model has the predicative capability to realistically capture the essential features of flame structure and $NO_x$ formation in the bluff-body stabilized flames.
Keywords
Turbulent Nonpremixed Bluffbody Flames; Eulerian Particle Flamelet Model; Turbulent-chemistry Interaction; Full $NO_x$ Chemistry; Radiation;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 Pitsch, H. and Steiner, H., 2000, 'Large-Eddy Simulation of a Turbulent Piloted Methane/Air Diffusion Flame (Sandia Flame D),' Physics of Fluids, Vol. 12, pp. 2541-2554   DOI   ScienceOn
2 Kronenburg, A., Bilger, R. W. and Kent, J. H., 2000, 'Computation of Conditional Average Scalar Dissipation in Turbulent Jet Diffusion Flames,' Flow, Turbulence and Combustion, Vol. 64, pp. 145-159   DOI
3 Kim, S. K., Yu, Y., Ahn, J. and Kim, Y. M., 2004b, 'Numerical Investigation of the Autoignition of Turbulent Gaseous Jets in a High- Pressure Environment Using the Multiple-RIf Model,' Fuel, Vol. 83, pp. 375-386   DOI   ScienceOn
4 Grear, J.F., 1992, The Twopnt Program for Boundary Value Problems, Sandia Report, SAND918320, Livermore
5 Klimenko, A. Y. and Bilger, R. W., 1999, 'Conditional Moment Closure for Turbulent Combustion,' Prog. Energy Combust. Sci., Vol. 25, pp. 595-687   DOI   ScienceOn
6 Kim, S. K., Kang, S. M. and Kim, Y. M., 2001, 'Flamelet Modeling for Combustion Processes and NOx Formation in the Turbulent Nonpremexed $CO/H_2/N_2$ Jet Flames,' Combustion Science and Technology, Vol. 168, pp.47-83   DOI
7 Kim, H. J., Kim, Y. M. and Ahn, K. Y., 2004a, 'Numerical Modeling of Turbulent Nonpremixed Lifted Flames,' KSME Int. J., Vol. 18, No. 1, pp. 167-172   과학기술학회마을
8 Kim, S. H., Huh, K. Y. and Tao, L., 2000, 'Application of the Elliptic Conditional Moment Closure Model to a Two-Dimensional Nonpremixed Methanol Bluff-Body Flame,' Combustion and Flame, Vol. 120, pp. 75-90   DOI   ScienceOn
9 Kang, S. M. and Kim, Y. M., 2003, 'Parallel Unstructured-Grid Finite-Volume Method for Turbulent Nonpremixed Flames Using the Flamelet Model,' Numerical Heat Transfer, Part B, Vol. 43, pp. 525-547   DOI   ScienceOn
10 Kim, H. J. and Kim, Y. M., 2002, 'Numerical Modeling for Combustion and Soot Formation Processes in Turbulent Diffusion Flames,' KSME Int. J., Vol. 16, No. 1, pp. 116-124   과학기술학회마을
11 Hewson, J. C., 1997, Pollutant Emissions from Nonpremixed Hydrocarbon Flames, PhD Thesis, University of California, San Diego
12 Radhakrishnan, K. and Hindmarsh, A. C., 1993, 'Description and Use of LSODE, the Livermore Solver for Ordinary Differential Equations,' Lawrence Livermore National Laboratory Report, UCRL-ID-113855
13 Ferreira, J. C., 1996, Flamelet Modelling of Stabilization in Turbulent Non-premixed Combustion, PhD Thesis, ETHZ Zuerich Switzerland
14 Vervisch, L. and Veynante, D., 2002, 'Turbulent Combustion Modeling,' Prog. Energy Combust. Sci., Vol. 28, pp. 193-266   DOI   ScienceOn
15 Turpin, G. and Troyes, J., 2000, 'Validation of a Two-Equation Turbulence Model for Axisymmetric Reacting and Nonreacting Flows,' AIAA paper 2000-3463
16 Dally, B. B., Masri, A. R., Barlow, R. S., Fiechtner, G. J. and Fletcher, D. F., 1996, 'Measurements of NO in Turbulent Non-premixed Flames Stabilized on a Bluff Body,' Proc. 26th Symp. (Int.) Comb., Combustion Institute, Pittsburgh, pp. 2191-2197
17 Dally, B. B., Masri, A. R., Barlow, R. S. and Fiechtner, G. J., 1998, 'Instantaneous and Mean Compositional Structure of Bluff- Body Stabilized Nonpremixed Flames,' Combustion and Flame, Vol. 114, pp. 119-148   DOI   ScienceOn
18 Roquemore, W. M., Tankin, R. S., Chiu, H. H. and Lottes, S. A., 1984, 'The Role of Vortex Shedding in a Bluff-Body Combustor,' Experimental Measurement and Techniques in Turbulent Reactive and Nonreactive Flows, Vol. 66, pp. 159-174
19 Pitsch, H., Riesmeier, E. and Peters, N., 2000, 'Unsteady Flamelet Modeling of Soot Formation in Turbulent Jet Diffusion Flames,' Combustion Science and Technology, Vol. 158, pp. 389-406   DOI   ScienceOn
20 Pope, S. B., 2000, Turbulent Flows, Cambridge University Press
21 Pitsch, H., Chen, M. and Peters, N., 1998, 'Unsteady Flamelet Modeling of Turbulent Hydrogen-Air Diffusion Flames,' Proc. 27th Symp. (Int.) Comb., Combustion Institute, Pittsburgh, pp. 1057-1064
22 Barths, H., Hasse, C., Bikas, G. and Peters, N., 2000, 'Simulation of Combustion in Direct Injection Diesel Engines Using an Eulerian particle Flamelet Model,' Proc. 28th Symp. (Int.) Comb., Combustion Institute, Pittsburgh, pp. 1161 - 1168
23 Pitsch, H., 2000, 'Unsteady Flamelet Modeling of Differential Diffusion in Turbulent Jet Diffusion Flames,' Combustion and Flame, Vol. 123, pp. 358-374   DOI   ScienceOn
24 Pitsch, H., Barths, H. and Peters, N., 1996, 'Three-Dimensional Modeling of NOx and Soot Formation in DI-Diesel Engines Using Detailed Chemistry Based on the Interactive Flamelet Approach,' SAE paper 962057
25 Peters, N., 2000, Turbulent Combustion, Cambridge University Press
26 Peters, N., 1986, 'Laminar Flamelet Concepts in Turbulent Combustion,' Proc. 21st Symp. (Int.) Comb., Combustion Institute, Pittsburgh, pp.1231-1250
27 Coelho, P. J. and Peters, N., 2001, 'Numerical Simulation of a MILD Combustion Burner,' Combustion and Flame, Vol. 124, pp. 503-518   DOI   ScienceOn
28 Marracino, B. and Lentini, D., 1997, 'Radiation Modelling in Non-Luminous Nonpremixed Turbulent Flames,' Combustion Science and Technology, Vol. 128, p. 23   DOI   ScienceOn
29 Barths, H., Peters, N., Brehm, N., Mack, A., Pfitzner, M. and Smiljanovski, Y., 1998, 'Simulation of Pollutant Formation in a Gas-Turbine Combustor using Unsteady Flamelets,' Proc. 27th Symp. (Int.) Comb., Combustion Institute, Pittsburgh, pp. 1841-1847
30 Chen, M., Herrmann, M. and Peters, N., 2000, 'Flamelet Modeling of Lifted Turbulent Me- thane/Air and Propane/Air Jet Diffusion Flames,' Proc. 28th Symp. (Int.) Comb., Combustion Institute, Pittsburgh, pp. 167-174
31 Libby, P. A. and Williams, F. A., eds, 1994, Turbulent Reacting Flows, New York, Academic Press