• Title/Summary/Keyword: initial shape analysis

Search Result 565, Processing Time 0.063 seconds

A Study on the Shape Finding and Patterning Procedures for Membrane Structures (막구조의 초기형상 및 재단도 결정알고리즘에 관한 연구)

  • 한상을;이경수;이상주;유용주
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.298-305
    • /
    • 1998
  • The purpose of this study is to propose the method of determining the initial fabric membrane structures surface and membrane patterning procedures. Tension structure, such as, fabric membrane structures and cable-net, is stabilized by their initial prestress and boundary condition. The process to find initial structural overall shape of tension structures produced by initial prestress called Shape Finding or Shape Analysis. One of the most important factor for the design of membrane structures is to search initial smooth surface, because unlike steel or concrete building elements which resist loads in bending, all tension structure forces are carried within the surface by membrane stress or cable tension. To obtain initial surface of fabric membrane element in large deformation analysis, the membrane element is idealized as cable using a technique with Force-density method. and that result is compared with well-known nonlinear numerical method, such as Newton-raphson method and Dynamic relaxation method. The shape resulting from Force-density method has been dealt with as the initial membrane shape and used patterning procedures.

  • PDF

An Estimate for Convergence and Efficiency of Nonlinear Shape Analysis According to the Control Techniques (제어기법에 따른 비선형 형상해석의 수렴성 및 효율성 펑가)

  • Jeong, Eul-Seok;Jeon, Jin-Hyung;Shon, Su-Deog;Kim, Seung-Deog
    • Proceeding of KASS Symposium
    • /
    • 2006.05a
    • /
    • pp.214-223
    • /
    • 2006
  • Membrane structures, a kind of lightweight soft structural system, are used for spatial structures. The material property of the membrane has strong axial stiffness, but little bending stiffness. The design procedure of membrane structures are needed to do shape finding, stress-deformation analysis and cutting pattern generation. In shape finding, membrane structures are unstable structures initially. These soft structures need to be introduced initial stresses because of its initial unstable state, and happen large deformation phenomenon. Therefore, in this study, to find the structural shape after large deformation caused by initial stress, we need the shape analysis considering geometric nonlinear term. And we investigate the evaluation of shape analysis technique's convergence and efficiency according to the control method

  • PDF

A Study on Cutting Pattern Generation of Membrane Structures by Using Geometric Line (막 구조물의 측지선을 이용한 재단도 생성에 관한 연구)

  • Ahn, Sang-Gil;Shon, Su-Deok;Kim, Seung-Deog
    • Proceeding of KASS Symposium
    • /
    • 2005.05a
    • /
    • pp.125-132
    • /
    • 2005
  • Membrane structures, a kind of lightweight soft structural system, are used for spatial structures. The material property of the membrane has strong axial stiffness, but little bending stiffness. The design procedure of membrane structures are needed to do shape finding, stress-deformation analysis and cutting pattern generation. In shape finding, membrane structures are unstable structures initially. These soft structures need to be introduced initial stresses because of its initial unstable state, and it happens large deformation phenomenon. And also there are highly varied in their size, curvature and material stiffness. So, the approximation inherent in cutting pattern generation methods is quite different. Therefore, in this study, to find the structural shape after large deformation caused by Initial stress, we need the shape analysis considering geometric nonlinear ten And the geodesic line on surface of initial equilibrium shape and the cutting pattern generation using the geodesic line is introduced.

  • PDF

A Study on the Actual Equilibrium Analysis for Membrane Structures (막구조물의 준공평형 형상해석에 관한 연구)

  • 이장복;김재열;권택진
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.61-68
    • /
    • 2000
  • In general, the design of membrane structures takes three steps. The first is shape finding analysis which is determination of initial equilibrium geometry with uniform stresses. The second step involve the computation of the stress-deformation to get completed membrane under various load conditions. The third step is to divide the membrane structures into several plan strips from the initial equilibrium states. This procedure is needed because of the initial shape has usually undevelopable curved surface and is called as "cutting patterns generation". By introducing this work, the deformation due to the initial stress is removed and approximate cutting patterns are generated. In this approach, however, material properties is not considered, therefore the error between the design stresses and actual stresses during the fabrication of plan strips should be occurred. In this paper, actual equilibrium shape analysis procedure for HP shape models is presented. The deviations of stresses between the design stresses and actual stresses are estimated.

  • PDF

A Study on the Optimal Initial Stress-Finding of Structures Stabilized by Cable-Tension (장력안정 구조물의 최적초기응력 탐색에 관한 연구)

  • 최옥훈;한상을;권택진
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.04a
    • /
    • pp.287-294
    • /
    • 1999
  • The tensegrity structure by prestressed cable, which may have large freedom in scale and form and therefore are received much attention from the view points of their light weight and aesthetics, is a very flexible and geometrically unstable structure because the cable material has little initial rigidity. For the stable self-equilibrated state of the usually very deformable structure, the method to find the optimal initial stress by the shape analysis is proposed in this paper. The proposed procedure is to derive the nonlinear finite element formula of cable and truss members considering geometric nonlinearity and used to modified load incremental method adding to Newton-Raphson method with the proposed condition for optimal initial stress. The result of the shape analysis for the tensegrity structure with the radius of 30m is shown the almost approximated shape to architectural shape and the changed procedure of initial stress

  • PDF

Initial Shape Analysis of Suspension Bridge System under Dead Load (고정하중을 받는 현수교 시스템의 초기형상 결정법)

  • Kim, Min;Kim, Moon-Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.6
    • /
    • pp.511-521
    • /
    • 2010
  • This paper presents a simplified analysis method of determining the initial shape of suspension bridges, including the horizontal tension force of the main cable and the locations of each hanging point, considering the force equilibrium condition of each hanging point. This method is effective because it requires less effort than the methods used in other studies, for which complicated non-linear analysis was used, to comparatively determine the exact initial shape. The accuracy and validity of the present method are demonstrated by comparing the results of this study with those of previous researchers' numerical examples, including 2D and 3D models.

A Study on the Intial Blank Design Using Ideal Forming Theory (이상적 변형이론을 이용한 박판 초기형상 설계에 관한 연구)

  • 박상후;윤정환;양동열;김용환;이장희
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.4
    • /
    • pp.207-218
    • /
    • 1997
  • A new blank design method is introduced to predict the blank shape and the strain distribution in the sheet metal forming process. This method deals with only one step from the final shape to the initial blank using the ideal forming theory. Based on this theory, a three-dimensional membrane finite element code has been developed to design an initial blank in the sheet metal forming process. In this paper, the designs of initial blanks for forming a cylindrical cup, a rectangular cup, and a front fender are presented as examples. Also, it compares the two shapes, the target shape with the shape which is deformed from the initial blank using the FEM analysis code. The results illustrate the information that this direct design code is useful in the preliminary design state.

  • PDF

Effect of Initial Shape Imperfection and Residual Stress on the Ultimate Strength of Ring-Stiffened Cylinders under Hydrostatic Pressure (수압을 받는 원환보강원통의 최종강도에 대한 초기 형상결함과 잔류응력의 영향)

  • 조상래;김승민
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.139-143
    • /
    • 2001
  • Ring-stiffened cylinders are widely used as the pressure hull of submarines and underwater vehicles. For large ring-stiffened cylinders cylindrical shells are fbricated by cold rolling of flat plates and then welding of curved shells. After forming cylinders ring-stiffeners are welded on th the cylinders. Due to these cold roiling and welding initial shape imperfections and residual stresses exists in fabricated ring-stiffened cylinders. It is well known that the initial shape and material imperfections affect the ultimate strength of ring-stiffened cylinders significantly. In this paper previous researches on the effects of initial shape imperfections and residual stresses are briefly reviewed Recently a numerical analysis computer program was developed to predict the ultimate strength of ring-stiffened cylinders subjected to hydrostatic pressure, which is based on the Dynamic Relaxation technique. This program was employed to numerically investigate those effects. The numerical predictions were substantiated with relevant experimental results.

  • PDF

Development of Optimal Blank Shape Design Program Using the Initial Velocity of Boundary Nodes (초기 속도법을 이용한 최적 블랭크 설계 프로그램의 개발)

  • 심현보;이상헌;손기찬
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.05a
    • /
    • pp.77-81
    • /
    • 2002
  • A new method of optimal blank shape design using the initial nodal velocity (INOV) has been proposed for the drawings of arbitrary shaped cups. With the given information of tool shape and the final product shape, corresponding initial blank shape has been found from the motion of boundary nodes. Although the sensitivity method, the past work of Hynbo Shim and Kichan Son, has been proved to be excellent method to find optimal blank shapes, the method has a problem that a couple of deformation analysis is required at each design step and it also exhibits an abnormal behaviors in the rigid body rotation prevailing region. In the present method INOV, only a single deformation analysis per each design stage is required. Drawings of practical products as well as oil-pan have been chosen as the examples. At every case the optimal blank shapes have been obtained only after a few times of modification without predetermined deformation path. The deformed shape with predicted optimal blank almost coincides with the target shape at every case. Through the investigation the INOV is found to be very effective in the arbitrary shaped drawing process design.

  • PDF

Development of Optimal Blank Shape Design Program Using the Initial Velocity of Boundary Nodes (초기 속도법을 이용한 최적 블랭크 설계 프로그램의 개발)

  • 심현보;이상헌;손기찬
    • Transactions of Materials Processing
    • /
    • v.11 no.6
    • /
    • pp.487-494
    • /
    • 2002
  • A new method of optimal blank shape design using the initial nodal velocity (INOV) has been proposed for the drawings of arbitrary shaped cups. With the given information of tool shape and the final product shape, corresponding initial blank shape has been found from the motion of boundary nodes. Although the sensitivity method, the past work of the present authors, has been proved to be excellent method to find optimal blank shapes, the method has a problem that a couple of deformation analysis is required at each design step and it also exhibits an abnormal behaviors in the rigid body rotation prevailing region. In the present method INOV, only a single deformation analysis per each design stage is required. Drawings of practical products as well as oil-pan, have been chosen as the examples. At every case the optimal blank shapes have been obtained only after a few times of modification without predetermined deformation path. The deformed shape with predicted optimal blank almost coincides with the target shape at every case. Through the investigation the INOV is found to be very effective in the arbitrary shaped drawing process design.