• Title/Summary/Keyword: initial ratios

Search Result 602, Processing Time 0.025 seconds

Synthesis of calcium phosphates from abalone shells via precipitation (전복패각을 침전법의 원료로 이용한 calcium phosphates의 합성)

  • Moon, Sung Wook;Lee, Byeong Woo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.4
    • /
    • pp.143-149
    • /
    • 2020
  • Calcium phosphates recognized as important bio-materials have been successfully synthesized by simple precipitation using waste abalone shells, which are rich mineral sources of calcium. Calcium hydroxide (Ca(OH)2) originated from abalone shells was used as calcium source (precursor) for the preparation. Synthesis of calcium phosphates was performed by reacting calcium hydroxide with phosphoric acid (H3PO4) in aqueous solution. The initial precursor Ca/P ratios were adjusted to 1.50, 1.59 and 1.67, and the effect of the composition and the heat treatment on the synthesized powders and sintered bodies was investigated. The phases of the sintered ceramics prepared at 1150℃ were hydroxyapatite (HAp), β-tricalcium phosphate (β-TCP), and biphasic phosphate (HAp with β-TCP)), which were determined by the initial precursor Ca/P ratios. The results demonstrate the possibility for the synthesis of high value-added calcium phosphates from economical starting materials with low cost and high availability.

Piston Crevice Hydrocarbon Oxidation During Expansion Process in an SI Engine

  • Kyoungdoug Min;Kim, Sejun
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.888-895
    • /
    • 2003
  • Combustion chamber crevices in SI engines are identified as the largest contributors to the engine-out hydrocarbon emissions. The largest crevice is the piston ring-pack crevice. A numerical simulation method was developed, which would allow to predict and understand the oxidation process of piston crevice hydrocarbons. A computational mesh with a moving grid to represent the piston motion was built and a 4-step oxidation model involving seven species was used. The sixteen coefficients in the rate expressions of 4-step oxidation model are optimized based on the results from a study on the detailed chemical kinetic mechanism of oxidation in the engine combustion chamber. Propane was used as the fuel in order to eliminate oil layer absorption and the liquid fuel effect. Initial conditions of the burned gas temperature and in-cylinder pressure were obtained from the 2-zone cycle simulation model. And the simulation was carried out from the end of combustion to the exhaust valve opening for various engine speeds, loads, equivalence ratios and crevice volumes. The total hydrocarbon (THC) oxidation in the crevice during the expansion stroke was 54.9% at 1500 rpm and 0.4 bar (warmed-up condition). The oxidation rate increased at high loads, high swirl ratios, and near stoichiometric conditions. As the crevice volume increased, the amount of unburned HC left at EVO (Exhaust Valve Opening) increased slightly.

Spheroidization Behavior of SK85 High Carbon Steel (SK85 고탄소강의 구상화 거동)

  • Ha, T.K.;Kim, K.J.;Na, G.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.350-353
    • /
    • 2009
  • In the present study, the effect of initial microstructure, cold reduction ratio, and annealing temperature on the spherodization rate of SK85 high carbon steel sheet was investigated. High carbon steel sheet fabricated by POSCO was soaked at $800^{\circ}C$ for 2 hr in a box furnace and then treated at $570^{\circ}C$ for 5 min in a salt bath furnace followed by water quenching to obtain a fine pearlite structure. Cold rolling was conducted on the sheets of fine pearlite by reduction ratios of 20, 30, and 40% and heat treatment for spheroidization was carried out at 600 and $720^{\circ}C$ for the various time intervals from 0.1 to 32 hrs. Area fraction of spheroidized cementite was measured with an image analyzer as a function of cold reduction ratios and duration times.

  • PDF

Experimental study on fire performance of axially-restrained NSC and HSC columns

  • Wu, Bo;Li, Yi-Hai
    • Structural Engineering and Mechanics
    • /
    • v.32 no.5
    • /
    • pp.635-648
    • /
    • 2009
  • This paper describes fire performance of eight axially restrained reinforced concrete (RC) columns under a combination of two different load ratios and two different axial restraint ratios. The eight RC columns were all concentrically loaded and subjected to ISO834 standard fire on all sides. Axial restraints were imposed at the top of the columns to simulate the restraining effect of the rest of the whole frame. The axial restraint was effective when the column was expanding as well as contracting. As the results of the experiments have shown, the stiffness of the axial restraint and load level play an important role in the fire behaviors of both HSC and NSC columns. It is found that (a) the maximum deformations during expanding phase were influenced mostly by load ratio and hardly by axial restraint ratio, (b) For a given load ratio, axial restraint ratio had a great impact on the development of axial deformation during contraction phase beyond the initial equilibrium state, (c) increasing the axial restraint increased the value of restraint force generated in both the NSC and HSC columns, and (d) the development of column axial force during the contracting and cooling phase followed nearly parallel trend for columns under the same load ratio.

The Effect of Intake Swirl Ratios on Combustion Performance in a Heavy-Duty LPG Engine (대형 LPG 엔진의 흡입 스월비에 따른 연소성능에 관한 연구)

  • 한병주;김창업;강건용;이창식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.5
    • /
    • pp.46-53
    • /
    • 2001
  • To optimize the intake flow condition in the heavy-duty LPG SI engine, five different swirl ratios of intake port were investigated experimentally by oil spot method, LDV and single cylinder engine test. The flow characteristics near the piston surface were observed by oil spot method and magnitudes of swirl flow were measured quantatively by LDV method in the steady flow rig. The engine performances of various swirl flow were also tested with the heavy-duty LPG SI single cylinder engine. In the results, high swirl ratio, above $R_s$=2.3, was not suitable to develope a stable flame kernel and to produce high engine performance. Especially it was more serious under lean burn conditions, since turbulence intensity was smaller than bulk flow though those are increased together. These results were also confirmed by LDV measurement and oil spot method. On the contrary, low swirl ratio($R_s$=1.3) is not good to propagate a flame since the turbulence intensity and bulk flow are vanished during compression stroke and low swirl ratio has too weak initial energy for stable combustion. Therefore, the of optimized swirl ratio f3r the heavy-duty LPG engine in this work was found around $R_s$=2.0.

  • PDF

Adhesion Properties of Urea-Melamine-Formaldehyde (UMF) Resin with Different Molar Ratios in Bonding High and Low Moisture Content Veneers

  • Xu, Guang-Zhu;Eom, Young-Geun;Lim, Dong-Hyuk;Lee, Byoung-Ho;Kim, Hyun-Joong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.2
    • /
    • pp.117-123
    • /
    • 2010
  • The objective of this research was executed to investigate the effect of molar ratio of formaldehyde to urea and melamine (F/(U+M)) of urea-melamine-formaldehyde (UMF) resin on bonding high and low moisture content veneers. For that purpose, UMF resin types with 5 different F/(U+M) molar ratios (1.45, 1.65, 1.85, 2.05, and 2.25) synthesized were used in present study. First, their curing behavior was evaluated by differential scanning calorimetry. Second, their adhesion performance in bonding high and low moisture content veneers was evaluated by probe tack and dry and wet shear strength tests. Curing temperature and reaction enthalpy decreased with the increase of F/(U+M) molar ratio. And the dry and wet shear strengthsof plywood manufactured from low moisture content veneers were higher than thoseof plywood manufactured from high moisture content veneers. Also, the maximum initial tack force on the low moisture content veneer was higher than that on the high moisture content veneer.

Occurrence of Sand Liquefaction on Static and Cyclic Loading (정적 및 동적 하중에서 모래의 액상화 발생)

  • 양재혁
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.6
    • /
    • pp.235-244
    • /
    • 2001
  • Liquefaction may be caused by sudden decrease in the soil strength under undrained conditions. This loss of soil strength is related to the development of excess pore pressures. During this study, fines content affects the maximum and minimum void ratios are investigated. The results of static and cyclic triaxial test on silty saturated sands are presented. These tests are performed to evaluate liquefaction strength and static and cyclic behavior characteristics. The samples are obtained from Saemangeum and drying on air. The main results are summarized as follows : 1) The maximum and minimum void ratio lines follow similar trends. 2) Maximum and minimum void ratios are established at 20~30% fines content. 3) As confining pressures and overconsolidation ratio are increased, the resistance to liquefaction are increased. 4) Instability friction angles are increased with increasing initial relative density. 5) The resistance to liquefaction are decreased with increasing effective stress ratio.

  • PDF

Force density ratios of flexible borders to membrane in tension fabric structures

  • Asadi, H.;Hariri-Ardebili, M.A.;Mirtaheri, M.;Zandi, A.P.
    • Structural Engineering and Mechanics
    • /
    • v.67 no.6
    • /
    • pp.555-563
    • /
    • 2018
  • Architectural fabrics membranes have not only the structural performance but also act as an efficient cladding to cover large areas. Because of the direct relationship between form and force distribution in tension membrane structures, form-finding procedure is an important issue. Ideally, once the optimal form is found, a uniform pre-stressing is applied to the fabric which takes the form of a minimal surface. The force density method is one of the most efficient computational form-finding techniques to solve the initial equilibrium equations. In this method, the force density ratios of the borders to the membrane is the main parameter for shape-finding. In fact, the shape is evolved and improved with the help of the stress state that is combined with the desired boundary conditions. This paper is evaluated the optimum amount of this ratio considering the curvature of the flexible boarders for structural configurations, i.e., hypar and conic membranes. Results of this study can be used (in the absence of the guidelines) for the fast and optimal design of fabric structures.

Analysis of Simulation of Daylight and Experiment for Determining on Effective Dimming Ratio (효과적인 조광제어시스템 적용을 위한 주광시뮬레이션과 실험데이터 분석)

  • Kim, Ga-Young;Kim, Yu-Sin;Choi, An-Seop
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.1
    • /
    • pp.1-9
    • /
    • 2007
  • This study proposes to increase the energy-saving effects by reducing excessive intensity of radiation of artificial lighting through analyzing daylight incident. A photosensor sends amounts of detected luminous flux to digital control unit(DCU) as a signal and then, it can decide dimming ratios, received a proper dimming signal from DCU. Generally it is effective to control artificial lighting with the different control ratio of each zone by setting a photosensor as same number and rows as artificial lighting. However, it is ineffective to do in initial costs of systems aspect in offices. As a result of grasping the distribution of daylight previously and analyzing daylight and dimming data, we can dim different dimming ratios to each zone of artificial lighting by a single photosensor.

A Numerical Simulation on the Process of Diaphragm Opening in Shock Tube Flows

  • Kang, M.S.;Nagdewe, S.;Kim, H.D.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.275-280
    • /
    • 2008
  • Shock tube flow measurement has been often troubled with a finite opening time of diaphragm, but there is no systematic work to investigate its effect on the shock tube flow. In the present study, both the experimental and computational works have been performed on the shock tube flows at low pressure ratios. The computational analysis has been performed using the two-dimensional, unsteady, compressible Navier-Stokes equations, based upon a TVD MUSCL finite difference scheme. It is known that the present computational results reproduce the experimental data with good accuracy and simulate successfully the process of diaphragm opening as a function of time. The concept of an imaginary center is introduced to specify the non-centered expansion wave due to a finite opening time of diaphragm. The results obtained show that the diaphragm opening time is reduced as the initial pressure ratio of shock tube increases, leading to the effect of a finite opening time of diaphragm to be more remarkable at low pressure ratios.

  • PDF