• 제목/요약/키워드: initial model

검색결과 5,174건 처리시간 0.031초

베이지안 기법을 활용한 공용성 모델개발 연구 (Pavement Performance Model Development Using Bayesian Algorithm)

  • 문성호
    • 한국도로학회논문집
    • /
    • 제18권1호
    • /
    • pp.91-97
    • /
    • 2016
  • PURPOSES : The objective of this paper is to develop a pavement performance model based on the Bayesian algorithm, and compare the measured and predicted performance data. METHODS : In this paper, several pavement types such as SMA (stone mastic asphalt), PSMA (polymer-modified stone mastic asphalt), PMA (polymer-modified asphalt), SBS (styrene-butadiene-styrene) modified asphalt, and DGA (dense-graded asphalt) are modeled in terms of the performance evaluation of pavement structures, using the Bayesian algorithm. RESULTS : From case studies related to the performance model development, the statistical parameters of the mean value and standard deviation can be obtained through the Bayesian algorithm, using the initial performance data of two different pavement cases. Furthermore, an accurate performance model can be developed, based on the comparison between the measured and predicted performance data. CONCLUSIONS : Based on the results of the case studies, it is concluded that the determined coefficients of the nonlinear performance models can be used to accurately predict the long-term performance behaviors of DGA and modified asphalt concrete pavements. In addition, the developed models were evaluated through comparison studies between the initial measurement and prediction data, as well as between the final measurement and prediction data. In the model development, the initial measured data were used.

부분분포하중이 평면 포물선아치의 동적응답에 마치는 영향 (Effects of Partially Distributed Loads on Dynamic Response of Plane Parabolic Arch)

  • 조진구;박근수
    • 한국농공학회논문집
    • /
    • 제46권6호
    • /
    • pp.21-28
    • /
    • 2004
  • This study aims to investigate the effects of partially distributed loads on the dynamic behaviour of steel parabolic arches by using the elasto-plastic finite element model based on the Von Mises yield criteria and the Prandtl-Reuss How rule. For this purpose, the vertical and the radial load conditions were considered as a distributed loading and the loading range is varied from 40% to 100% of arch span. Normal arch and arch with initial deflection were studied. The initial deflection of arch was assumed by the sinusoidal motile of ${\omega}_i\;=\;{\\omega}_O$ sin ($n{\pi}x/L$). Several numerical examples were tested considering symmetric initial deflection when the maximum initial deflection at the apex is fixed as L/1000. The analysis resluts showed that the maximum deflection at the apex of arch was occurred when 70% of arch span was loaded. The maximum deflection at the quarter point of arch span was occurred when 50% of arch span was loaded. It is known that the optimal rise to span ratio between 0.2 and 0.3 when the vertical or radial distributed load is applied. It is verified that the influence of initial deflection of radial load case is more serious than that of vertical load case.

Rotor Initial Position Estimation Based on sDFT for Electrically Excited Synchronous Motors

  • Yuan, Qing-Qing;Wu, Xiao-Jie;Dai, Peng
    • Journal of Power Electronics
    • /
    • 제14권3호
    • /
    • pp.564-571
    • /
    • 2014
  • Rotor initial position is an important factor affecting the control performance of electrically excited synchronous motors. This study presents a novel method for estimating rotor initial position based on sliding discrete Fourier transform (sDFT). By injecting an ac excitation into the rotor winding, an induced voltage is generated in stator windings. Through this voltage, the stator flux can be obtained using a pure integral voltage model. Considering the influence from a dc bias and an integral initial value, we adopt the sDFT to extract the fundamental flux component. A quadrant identification model is designed to realize the accurate estimation of the rotor initial position. The sDFT and high-pass filter, DFT, are compared in detail, and the contrast between dc excitation and ac injection is determined. Simulation and experimental results verify that this type of novel method can eliminate the influence of dc bias and other adverse factors, as well as provide a basis for the control of motor drives.

진화론적 데이터 입자에 기반한 퍼지 집합 기반 퍼지 추론 시스템의 최적화 (Optimization of Fuzzy Set-based Fuzzy Inference Systems Based on Evolutionary Data Granulation)

  • 박건준;이동윤;오성권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.343-345
    • /
    • 2004
  • We propose a new category of fuzzy set-based fuzzy inference systems based on data granulation related to fuzzy space division for each variables. Data granules are viewed as linked collections of objects(data, in particular) drawn together by the criteria of proximity, similarity, or functionality. Granulation of data with the aid of Hard C-Means(HCM) clustering algorithm help determine the initial parameters of fuzzy model such as the initial apexes of the membership functions and the initial values of polyminial functions being used in the premise and consequence part of the fuzzy rules. And the initial parameters are tuned effectively with the aid of the genetic algorithms(GAs) and the least square method. Numerical example is included to evaluate the performance of the proposed model.

  • PDF

종동력을 받는 이중진자의 혼돈운동 연구 (Chaotic Behavior of a Double Pendulum Subjected to Follower Force)

  • 장안배;이재영
    • 소음진동
    • /
    • 제7권3호
    • /
    • pp.439-447
    • /
    • 1997
  • In this study, the dynamic instabilities of a nonlinear elastic system subjected to follower forces are investigated. The two-degree-of-freedom double pendulum model with nonlinear geometry, cubic spring, and linear viscous damping is used for the study. The constant, the initial impact forces acting at the end of the model are considered. The chaotic nature of the system is identified using the standard methods, such as time histories, power density spectrum, and Poincare maps. The responses are chaotic and unpredictable due to the sensitivity to initial conditions. The sensitivities to parameters, such as geometric initial imperfections, magnitude of follower force, direction control constant, and viscous damping, etc., are analysed. Dynamic buckling loads are computed for various parameters, where the loads are changed drastically for the small change of parameters.

  • PDF

MRA 기반 선박 초기설계 해석 시스템 개발 (Development of Initial Ship Design Analysis System Based on MRA)

  • 한중수;권기억;최영
    • 한국CDE학회논문집
    • /
    • 제10권3호
    • /
    • pp.217-223
    • /
    • 2005
  • Tight integration between design and analysis processes and the data representation in the ship design application domain have been studied in this paper. Multi-Representation Architecture for design and analysis integration, proposed at Georgia Institute of Technology, has been carefully investigated for the application in the initial ship design stage. The MRA approach facilitates efficient generation of analysis models from the initial ship design data, thus reducing design lead time. Easy generation of analysis model is important because it allows quick analysis iteration under frequent design changes. The SMM, ABB and PBAM are defined for the analysis model of the typical ship structure. Only a part of the typical initial ship design data has been considered in the experimental implementation of the proposed approach. However, the prototype implementation shows that the application of MRA approach in the structural ship design domain is quite feasible. It is also contemplated that the same approach can be extended for other design and analysis views in the ship design domain.

The effect of gravity and hydrostatic initial stress with variable thermal conductivity on a magneto-fiber-reinforced

  • Said, Samia M.;Othman, Mohamed I.A.
    • Structural Engineering and Mechanics
    • /
    • 제74권3호
    • /
    • pp.425-434
    • /
    • 2020
  • The present paper is concerned at investigating the effect of hydrostatic initial stress, gravity and magnetic field in fiber-reinforced thermoelastic solid, with variable thermal conductivity. The formulation of the problem applied in the context of the three-phase-lag model, Green-Naghdi theory with energy dissipation, as well as coupled theory. The exact expressions of the considered variables by using state-space approaches are obtained. Comparisons are performed in the absence and presence of the magnetic field as well as gravity. Also, a comparison was made in the three theories in the absence and presence of variable thermal conductivity as well as hydrostatic initial stress. The study finds applications in composite engineering, geology, seismology, control system and acoustics, exploration of valuable materials beneath the earth's surface.

Combined effects of end-shortening strain, lateral pressure load and initial imperfection on ultimate strength of laminates: nonlinear plate theory

  • Ghannadpour, S.A.M.;Barvaj, A. Kurkaani
    • Steel and Composite Structures
    • /
    • 제33권2호
    • /
    • pp.245-259
    • /
    • 2019
  • The present study aims to investigate the ultimate strength and geometric nonlinear behavior of composite plates containing initial imperfection subjected to combined end-shortening strain and lateral pressure loading by using a semi-analytical method. In this study, the first order shear deformation plate theory is considered with the assumption of large deflections. Regarding in-plane boundary conditions, two adjacent edges of the laminates are completely held while the two others can move straightly. The formulations are based on the concept of the principle of minimum potential energy and Newton-Raphson technique is employed to solve the nonlinear set of algebraic equations. In addition, Hashin failure criteria are selected to predict the failures. Further, two distinct models are assumed to reduce the mechanical properties of the failure location, complete ply degradation model, and ply region degradation model. Degrading the material properties is assumed to be instantaneous. Finally, laminates having a wide range of thicknesses and initial geometric imperfections with different intensities of pressure load are analyzed and discuss how the ultimate strength of the plates changes.

Dual-phase-lag model on thermo-microstretch elastic solid Under the effect of initial stress and temperature-dependent

  • Othman, Mohamed I.A.;Zidan, Magda E.M.;Mohamed, Ibrahim E.A.
    • Steel and Composite Structures
    • /
    • 제38권4호
    • /
    • pp.355-363
    • /
    • 2021
  • The present paper attempts to investigate the propagation of plane waves in an isotropic elastic medium under the effect of initial stress and temperature-dependent properties. The modulus of elasticity is taken as a linear function of the reference temperature. The formulation is applied under the thermoelasticity theory with dual-phase-lag; the normal mode analysis is used to obtain the expressions for the displacement components, the temperature, the stress, and the strain components. Numerical results for the field quantities are given in the physical domain and illustrated graphically. Comparisons are made with the results predicted by different theories (Lord-Shulman theory, the classical coupled theory of thermoelasticity and the dual-phase-lag model) in the absence and presence of the initial stress as well as the case where the modulus of elasticity is independent of temperature.

PROBABILISTIC MEASUREMENT OF RISK ASSOCIATED WITH INITIAL COST ESTIMATES

  • Seokyon Hwang
    • 국제학술발표논문집
    • /
    • The 5th International Conference on Construction Engineering and Project Management
    • /
    • pp.488-493
    • /
    • 2013
  • Accurate initial cost estimates are essential to effective management of construction projects where many decisions are made in the course of project management by referencing the estimates. In practice, the initial estimates are frequently derived from historical actual cost data, for which standard distribution-based techniques are widely applied in the construction industry to account for risk associated with the estimates. This approach assumes the same probability distribution of estimate errors for any selected estimates. This assumption, however, is not always satisfied. In order to account for the probabilistic nature of estimate errors, an alternative method for measuring the risk associated with a selected initial estimate is developed by applying the Bayesian probability approach. An application example include demonstrates how the method is implemented. A hypothesis test is conducted to reveal the robustness of the Bayesian probability model. The method is envisioned to effectively complement cost estimating methods that are currently in use by providing benefits as follows: (1) it effectively accounts for the probabilistic nature of errors in estimates; (2) it is easy to implement by using historical estimates and actual costs that are readily available in most construction companies; and (3) it minimizes subjective judgment by using quantitative data only.

  • PDF