Browse > Article
http://dx.doi.org/10.12989/scs.2019.33.2.245

Combined effects of end-shortening strain, lateral pressure load and initial imperfection on ultimate strength of laminates: nonlinear plate theory  

Ghannadpour, S.A.M. (New Technologies and Engineering Department, Shahid Beheshti University)
Barvaj, A. Kurkaani (New Technologies and Engineering Department, Shahid Beheshti University)
Publication Information
Steel and Composite Structures / v.33, no.2, 2019 , pp. 245-259 More about this Journal
Abstract
The present study aims to investigate the ultimate strength and geometric nonlinear behavior of composite plates containing initial imperfection subjected to combined end-shortening strain and lateral pressure loading by using a semi-analytical method. In this study, the first order shear deformation plate theory is considered with the assumption of large deflections. Regarding in-plane boundary conditions, two adjacent edges of the laminates are completely held while the two others can move straightly. The formulations are based on the concept of the principle of minimum potential energy and Newton-Raphson technique is employed to solve the nonlinear set of algebraic equations. In addition, Hashin failure criteria are selected to predict the failures. Further, two distinct models are assumed to reduce the mechanical properties of the failure location, complete ply degradation model, and ply region degradation model. Degrading the material properties is assumed to be instantaneous. Finally, laminates having a wide range of thicknesses and initial geometric imperfections with different intensities of pressure load are analyzed and discuss how the ultimate strength of the plates changes.
Keywords
ultimate strength; geometric nonlinearity; lateral pressure; initial imperfection; Ritz method; Hashin criteria;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 Taheri-Behrooz, F., Omidi, M. and Shokrieh, M.M. (2017), "Experimental and numerical investigation of buckling behavior of composite cylinders with cutout", Thin-Wall. Struct., 116, 136-144. https://doi.org/10.1016/j.tws.2017.03.009   DOI
2 Timoshenko, S.P. and Gere, J.M. (2009), Theory of Elastic Stability, Courier Corporation, New York, NY, USA.
3 Topal, U. (2013), "Application of a new extended layerwise approach to thermal buckling load optimization of laminated composite plates", Steel Compos. Struct., Int. J., 14(3), 283-293. https://doi.org/10.12989/scs.2013.14.3.283   DOI
4 Tornabene, F., Fantuzzi, N. and Bacciocchi, M. (2017), "Linear static behavior of damaged laminated composite plates and shells", Materials, 10(7), 811. https://doi.org/10.3390/ma10070811   DOI
5 Yang, Q.J. and Hayman, B. (2015a), "Prediction of post-buckling and ultimate compressive strength of composite plates by semianalytical methods", Eng. Struct., 84, 42-53. https://doi.org/10.1016/j.engstruct.2014.11.013   DOI
6 Yang, Q.J. and Hayman, B. (2015b), "Simplified ultimate strength analysis of compressed composite plates with linear material degradation", Compos. Part B: Eng., 69, 13-21. https://doi.org/10.1016/j.compositesb.2014.09.016   DOI
7 Yang, Q.J., Hayman, B. and Osnes, H. (2013), "Simplified buckling and ultimate strength analysis of composite plates in compression", Compos. Part B: Eng., 54, 343-352. https://doi.org/10.1016/j.compositesb.2013.05.017   DOI
8 Aghaei, M., Forouzan, M.R., Nikforouz, M. and Shahabi, E. (2015), "A study on different failure criteria to predict damage in glass/polyester composite beams under low velocity impact", Steel Compos. Struct., Int. J., 18(5), 1291-1303. https://doi.org/10.12989/scs.2015.18.5.1291   DOI
9 Argyris, J. and Tenek, L. (1997), "Recent advances in computational thermostructural analysis of composite plates and shells with strong nonlinearities", Appl. Mech. Rev., 50(5), 285-306. https://doi.org/10.1115/1.3101708   DOI
10 Becheri, T., Amara, K., Bouazza, M. and Benseddiq, N. (2016), "Buckling of symmetrically laminated plates using nth-order shear deformation theory with curvature effects", Steel Compos. Struct., Int. J., 21(6), 1347-1368. https://doi.org/10.12989/scs.2016.21.6.1347   DOI
11 Brubak, L. and Hellesland, J. (2007a), "Approximate buckling strength analysis of arbitrarily stiffened, stepped plates", Eng. Struct., 29(9), 2321-2333. https://doi.org/10.1016/j.engstruct.2006.12.002   DOI
12 Ghannadpour, S.A.M. and Ovesy, H.R. (2009b), "Exact postbuckling stiffness calculation of box section struts", Eng. Computat., 26(7), 868-893. https://doi.org/10.1108/02644400910985224   DOI
13 Brubak, L. and Hellesland, J. (2007b), "Semi-analytical postbuckling and strength analysis of arbitrarily stiffened plates in local and global bending", Thin-Wall. Struct., 45(6), 620-633. https://doi.org/10.1016/j.tws.2007.04.011   DOI
14 Brubak, L. and Hellesland, J. (2008), "Strength criteria in semianalytical, large deflection analysis of stiffened plates in local and global bending", Thin-Wall. Struct., 46(12), 1382-1390. https://doi.org/10.1016/j.tws.2008.03.013   DOI
15 Brubak, L., Hellesland, J. and Steen, E. (2007), "Semi-analytical buckling strength analysis of plates with arbitrary stiffener arrangements", J. Constr. Steel Res., 63(4), 532-543. https://doi.org/10.1016/j.jcsr.2006.06.002   DOI
16 Ghaheri, A., Keshmiri, A. and Taheri-Behrooz, F. (2014), "Buckling and vibration of symmetrically laminated composite elliptical plates on an elastic foundation subjected to uniform inplane force", J. Eng. Mech., 140(7), 04014049. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000760   DOI
17 Ghannadpour, S.A.M. and Ovesy, H.R. (2009a), "The application of an exact finite strip to the buckling of symmetrically laminated composite rectangular plates and prismatic plate structures", Compos. Struct., 89(1), 151-158. https://doi.org/10.1016/j.compstruct.2008.07.014   DOI
18 Ghannadpour, S.A.M. and Barekati, M. (2016), "Initial imperfection effects on postbuckling response of laminated plates under end-shortening strain using Chebyshev techniques", Thin-Wall. Struct., 106, 484-494. https://doi.org/10.1016/j.tws.2016.03.028   DOI
19 Ghannadpour, S.A.M., Ovesy, H.R. and Zia-Dehkordi, E. (2014), "An exact finite strip for the calculation of initial post-buckling stiffness of shear-deformable composite laminated plates", Compos. Struct., 108, 504-513. https://doi.org/10.1016/j.compstruct.2013.09.049   DOI
20 Ghannadpour, S.A.M. and Shakeri, M. (2018), "Energy based collocation method to predict progressive damage behavior of imperfect composite plates under compression", Latin Am. J. Solids Struct., 15(4). https://doi.org/10.1016/j.compstruct.2018.04.011
21 Hashin, Z. and Rotem, A. (1973), "A fatigue failure criterion for fiber reinforced materials", J. Compos. Mater., 7, 448-464. https://doi.org/10.1177/002199837300700404   DOI
22 Ghannadpour, S.A.M., Kiani, P. and Reddy, J.N. (2017), "Pseudo spectral method in nonlinear analysis of relatively thick imperfect laminated plates under end-shortening strain", Compos. Struct., 182, 694-710. https://doi.org/10.1016/j.compstruct.2017.08.076   DOI
23 Ghannadpour, S.A.M., Kurkaani Barvaj, A. and Tornabene, F. (2018a), "A semi-analytical investigation on geometric nonlinear and progressive damage behavior of relatively thick laminated plates under lateral pressure and end-shortening", Compos. Struct., 194, 598-610. https://doi.org/10.1016/j.compstruct.2018.04.011   DOI
24 Ghannadpour, S.A.M., Shakeri, M. and Kurkaani Barvaj, A. (2018b), "Ultimate strength estimation of composite plates under combined in-plane and lateral pressure loads using two different numerical methods", Steel Compos. Struct., Int. J., 29(6), 781-798. https://doi.org/10.12989/scs.2018.29.6.785
25 Hayman, B., Berggreen, C., Lundsgaard-Larsen, C., Delarche, A., Toftegaard, H., Dow, R.S., Downes, J., Misirlis, K., Tsouvalis, N. and Douka, C. (2011), "Studies of the buckling of composite plates in compression", Ships Offshore Struct., 6(1-2), 81-92. https://doi.org/10.1080/17445302.2010.528283   DOI
26 Magnucki, K., Malinowski, M. and Kasprzak, J. (2006), "Bending and buckling of a rectangular porous plate", Steel Compos. Struct., Int. J., 6(4), 319-333. https://doi.org/10.12989/scs.2006.6.4.319   DOI
27 Jiang, G., Li, F. and Li, X. (2016), "Nonlinear vibration analysis of composite laminated trapezoidal plates", Steel Compos. Struct., Int. J., 21(2), 395-409. https://doi.org/10.12989/scs.2016.21.2.395   DOI
28 Jiang, H., Ren, Y., Liu, Z., Zhang, S. and Wang, X. (2018), "Evaluations of failure initiation criteria for predicting damages of composite structures under crushing loading", J. Reinf. Plastics Compos., 37(21), 1279-1303. https://doi.org/10.1177/0731684418783847   DOI
29 Kar, V.R. and Panda, S.K. (2016), "Post-buckling behaviour of shear deformable functionally graded curved shell panel under edge compression", Int. J. Mech. Sci., 115, 318-324. https://doi.org/10.1177/0731684418783847   DOI
30 Li, S.R., Batra, R.C. and Ma, L.S. (2007), "Vibration of thermally post-buckled orthotropic circular plates", J. Thermal Stresses, 30(1), 43-57. https://doi.org/10.1080/01495730600897161   DOI
31 Ovesy, H.R., Ghannadpour, S.A.M. and Nassirnia, M. (2015), "Post-buckling analysis of rectangular plates comprising Functionally Graded Strips in thermal environments", Comput. Struct., 147, 209-215. https://doi.org/10.1016/j.compstruc.2014.09.011   DOI
32 Nejati, M., Dimitri, R., Tornabene, F. and Hossein Yas, M. (2017), "Thermal buckling of nanocomposite stiffened cylindrical shells reinforced by functionally Graded wavy Carbon NanoTubes with temperature-dependent properties", Appl. Sci., 7(12), 1223. https://doi.org/10.3390/app7121223   DOI
33 Ovesy, H.R. and Ghannadpour, S.A.M. (2011), "An exact finite strip for the initial postbuckling analysis of channel section struts", Comput. Struct., 89(19-20), 1785-1796. https://doi.org/10.1016/j.compstruc.2010.10.009   DOI
34 Ovesy, H.R., Ghannadpour, S.A.M. and Morada, G. (2005), "Geometric non-linear analysis of composite laminated plates with initial imperfection under end shortening, using two versions of finite strip method", Compos. Struct., 71(3-4), 307-314. https://doi.org/10.1016/j.compstruct.2005.09.030   DOI
35 Panda, S.K. and Singh, B.N. (2013), "Nonlinear finite element analysis of thermal post-buckling vibration of laminated composite shell panel embedded with SMA fibre", Aerosp. Sci. Technol., 29(1), 47-57. https://doi.org/10.1016/j.compstruc.2014.09.011   DOI
36 Sun, Y., Li, S.R. and Batra, R.C. (2016), "Thermal buckling and post-buckling of FGM Timoshenko beams on nonlinear elastic foundation", J. Thermal Stresses, 39(1), 11-26.   DOI