• Title/Summary/Keyword: initial model

Search Result 5,228, Processing Time 0.032 seconds

Research on the impact effect of AP1000 shield building subjected to large commercial aircraft

  • Wang, Xiuqing;Wang, Dayang;Zhang, Yongshan;Wu, Chenqing
    • Nuclear Engineering and Technology
    • /
    • v.53 no.5
    • /
    • pp.1686-1704
    • /
    • 2021
  • This study addresses the numerical simulation of the shield building of an AP1000 nuclear power plant (NPP) subjected to a large commercial aircraft impact. First, a simplified finite element model (F.E. model) of the large commercial Boeing 737 MAX 8 aircraft is established. The F.E. model of the AP1000 shield building is constructed, which is a reasonably simplified reinforced concrete structure. The effectiveness of both F.E. models is verified by the classical Riera method and the impact test of a 1/7.5 scaled GE-J79 engine model. Then, based on the verified F.E. models, the entire impact process of the aircraft on the shield building is simulated by the missile-target interaction method (coupled method) and by the ANSYS/LS-DYNA software, which is at different initial impact velocities and impact heights. Finally, the laws and characteristics of the aircraft impact force, residual velocity, kinetic energy, concrete damage, axial reinforcement stress, and perforated size are analyzed in detail. The results show that all of them increase with the addition to the initial impact velocity. The first four are not very sensitive to the impact height. The engine impact mainly contributes to the peak impact force, and the peak impact force is six times higher than that in the first stage. With increasing initial impact velocity, the maximum aircraft impact force rises linearly. The range of the tension and pressure of the reinforcement axial stress changes with the impact height. The perforated size increases with increasing impact height. The radial perforation area is almost insensitive to the initial impact velocity and impact height. The research of this study can provide help for engineers in designing AP1000 shield buildings.

Development and Validation of the Coupled System of Unified Model (UM) and PArameterized FOG (PAFOG) (기상청 현업 모형(UM)과 1차원 난류모형(PAFOG)의 접합시스템 개발 및 검증)

  • Kim, Wonheung;Yum, Seong Soo
    • Atmosphere
    • /
    • v.25 no.1
    • /
    • pp.149-154
    • /
    • 2015
  • As an attempt to improve fog predictability at Incheon International Airport (IIA) we couple the 3D weather forecasting model currently operational in Korea Meteorological Administration (regional Unified Model, UM_RE) with a 1D turbulence model (PAFOG). The coupling is done by extracting the meteorological data from the 3D model and properly inserting them in the PAFOG model as initial conditions and external forcing. The initial conditions include surface temperature, 2 m temperature and dew point temperature, geostrophic wind at 850 hPa and vertical profiles of temperature and dew point temperature. Moisture and temperature advections are included as external forcing and updated every hr. To validate the performance of the coupled system, simulation results of the coupled system are compared to those of the 3D model alone for the 22 sea fog cases observed over the Yellow Sea. Three statistical indices, i.e., Root Mean Square Error (RMSE), linear correlation coefficient (R) and Critical Success Index (CSI), are examined, and they all indicate that the coupled system performs better than the 3D model alone. These are certainly promising results but more improvement is required before the coupled system can actually be used as an operational fog forecasting model. For the RMSE, R, and CSI values for the coupled system are still not good enough for operational fog forecast.

Study on 4-degree-of-freedom Mathematical Model for Simulation of Wind Turbine System at Initial Design Stage (풍력발전기 초기단계 모사실험을 위한 4자유도 수학적 모형에 대한 연구)

  • Shin, Yun-Ho;Moon, Seok-Jun;Chung, Tae-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.8
    • /
    • pp.681-689
    • /
    • 2013
  • The commercial tools to simulate the non-linear dynamic characteristics of wind turbine system are various but, the tool take much time to simulate the control algorithm and require many input variables. In this paper, the procedures to derive the simplified 4-degree-of-freedom mathematical model of a 2-MW wind turbine which could be used at the initial design stage of the controller are proposed based on RISO's suggested method. In this model, the 1st tower fore-after bending motion and 1st blade flapping motion are also considered in addition to the rotor-generator rotation motion in the 2-DOF model. The effectiveness of the 4-DOF model is examined comparing with the 2-DOF model and verification of the simplified model is accomplished through modal analysis for whole wind turbine system.

A Study on the Performance of Parallelepiped Classification Algorithm (평행사변형 분류 알고리즘의 성능에 대한 연구)

  • Yong, Whan-Ki
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.4 no.4
    • /
    • pp.1-7
    • /
    • 2001
  • Remotely sensed data is the most fundamental data in acquiring the GIS informations, and may be analyzed to extract useful thematic information. Multi-spectral classification is one of the most often used methods of information extraction. The actual multi-spectral classification may be performed using either supervised or unsupervised approaches. This paper analyze the effect of assigning clever initial values to image classes on the performance of parallelepiped classification algorithm, which is one of the supervised classification algorithms. First, we investigate the effect on serial computing model, then expand it on MIMD(Multiple Instruction Multiple Data) parallel computing model. On serial computing model, the performance of the parallel pipe algorithm improved 2.4 times at most and, on MIMD parallel computing model the performance improved about 2.5 times as clever initial values are assigned to image class. Through computer simulation we find that initial values of image class greatly affect the performance of parallelepiped classification algorithms, and it can be improved greatly when classes on both serial computing model and MIMD parallel computation model.

  • PDF

On Constructing NURBS Surface Model from Scattered and Unorganized 3-D Range Data (정렬되지 않은 3차원 거리 데이터로부터의 NURBS 곡면 모델 생성 기법)

  • Park, In-Kyu;Yun, Il-Dong;Lee, Sang-Uk
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.37 no.3
    • /
    • pp.17-30
    • /
    • 2000
  • In this paper, we propose an efficient algorithm to produce 3-D surface model from a set of range data, based on NURBS (Non-Uniform Rational B-Splines) surface fitting technique. It is assumed that the range data is initially unorganized and scattered 3-D points, while their connectivity is also unknown. The proposed algorithm consists of three steps: initial model approximation, hierarchical representation, and construction of the NURBS patch network. The mitral model is approximated by polyhedral and triangular model using K-means clustering technique Then, the initial model is represented by hierarchically decomposed tree structure. Based on this, $G^1$ continuous NURBS patch network is constructed efficiently. The computational complexity as well as the modeling error is much reduced by means of hierarchical decomposition and precise approximation of the NURBS control mesh Experimental results show that the initial model as well as the NURBS patch network are constructed automatically, while the modeling error is observed to be negligible.

  • PDF

Research on the tightening strategy of bolted flange for contact stiffness of joint surface

  • Zuo, Weiliang;Liu, Zhifeng;Zhao, Yongsheng;Niu, Nana;Zheng, Mingpo
    • Structural Engineering and Mechanics
    • /
    • v.83 no.3
    • /
    • pp.341-351
    • /
    • 2022
  • During bolted flange assembly, the contact stiffness of some areas of the joint surface may be low due to the elastic interaction. In order to improve the contact stiffness at the lowest position of bolted flange, the correlation model between the initial bolt pre-tightening force and the contact stiffness of bolted flange is established in this paper. According to the stress distribution model of a single bolt, an assumption of uniform local contact stiffness of bolted flange is made. Moreover, the joint surface is divided into the compressive stress region and the elastic interaction region. Based on the fractal contact theory, the relationship model of contact stiffness and contact force of the joint surface is proposed. Considering the elastic interaction coefficient method, the correlation model of the initial bolt pre-tightening force and the contact stiffness of bolted flange is established. This model can be employed to reverse determine the tightening strategy of the bolt group according to working conditions. As a result, this provides a new idea for the digital design of tightening strategy of bolt group for contact stiffness of bolted flange. The tightening strategy of the bolted flange is optimized by using the correlation model of initial bolt pre-tightening force and the contact stiffness of bolted flange. After optimization, the average contact stiffness of the joint surface increased by 5%, and the minimum contact stiffness increased by 6%.

Ecological Health Assessments, Conservation and Management in Korea Using Fish Multi-Metric Model (어류를 이용한 한국의 하천생태계 건강성 평가)

  • An, Kwang-Guk;Lee, Sang-Jae
    • Korean Journal of Ecology and Environment
    • /
    • v.51 no.1
    • /
    • pp.86-95
    • /
    • 2018
  • The objective of this study was to describe the development and testing of an initial ecological health assessment model, based on the index of biological integrity (IBI) using fish assemblages, before establishing the final and currently used model for ecological health assessment, conservation and management of freshwater fish in Korea. The initial fish IBI model was developed during 2004~2006 and included 10 metrics, and in 2007 the final IBI 8-metric model was established for application to streams and rivers in four major Korean watersheds. In this paper, we describe how we developed fish sampling methods, determined metric attributes and categorized tolerance guilds and trophic guilds during the development of the multi-metric model. Two of the initial metrics were removed and the initial evaluation categories were reduced from six to four (excellent, good, fair, poor) before establishing the final national fish model. In the development phase, IBI values were compared with chemical parameters (BOD and COD as indicators of organic matter pollution) and physical habitat parameters to identify differences in IBI model values between chemical and physical habitat conditions. These processes undertaken during the development of the IBI model may be helpful in understanding the modifications made and contribute to creating efficient conservation and management strategies for stream environments to be used by limnologists and fish ecologists as well as stream/watershed managers.

Collapse Analysis of Simplified Vehicle Structure Models using Finite Element Limit Analysis (유한요소 극한해석을 이용한 단순체체모델의 붕괴거동해석)

  • Kim, H. S.;Huh, H.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.5
    • /
    • pp.1-9
    • /
    • 1998
  • The analysis concerns collapse behavior of framed vehicle models with the change of design parameters at the initial stage of conceptual design. Collapse analysis of a vehicle model with framed structures has been carried out using finite element limit analysis. The analysis makes sequential changes of design parameters from an initial model with frames of uniform section so as to stage then weak parts. As a result of those design changes, the collapse load of a model has been increased and the deflection toward a passenger room has been reduced. The results demonstrate the versatility of finite element limit analysis as a tool that confirms the safety of vehicle models.

  • PDF

Lip Recognition Using Active Shape Model and Shape-Based Weighted Vector (능동적 형태 모델과 가중치 벡터를 이용한 입술 인식)

  • 장경식
    • Journal of Intelligence and Information Systems
    • /
    • v.8 no.1
    • /
    • pp.75-85
    • /
    • 2002
  • In this paper, we propose an efficient method for recognizing lip. Lip is localized by using the shape of lip and the pixel values around lip contour. The shape of lip is represented by a statistically based active shape model which learns typical lip shape from a training set. Because this model is affected by the initial position, we use a boundary between upper and lower lip as initial position for searching lip. The boundary is localized by using a weighted vector based on lip's shape. The experiments have been performed for many images, and show very encouraging result.

  • PDF

Model Reference Adaptive Control of a Flexible Structure

  • Yang, Kyung-Jinn;Hong, Keum-Shik;Rhee, Eun-Jun;Yoo, Wan-Suk
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.10
    • /
    • pp.1356-1368
    • /
    • 2001
  • In this paper, the model reference adaptive control (MRAC) of a flexible structure is investigated. Any mechanically flexible structure is inherently distributed parameter in nature, so that its dynamics are described by a partial, rather than ordinary, differential equation. The MRAC problem is formulated as an initial value problem of coupled partial and ordinary differential equations in weak form. The well-posedness of the initial value problem is proved. The control law is derived by using the Lyapunov redesign method on an infinite dimensional filbert space. Uniform asymptotic stability of the closed loop system is established, and asymptotic tracking, i. e., convergence of the state-error to zero, is obtained. With an additional persistence of excitation condition for the reference model, parameter-error convergence to zero is also shown. Numerical simulations are provided.

  • PDF