• Title/Summary/Keyword: initial element

Search Result 1,671, Processing Time 0.033 seconds

Truss Models for Deformation Analyses of RC Members (트러스 모델을 이용한 RC 부재의 변형 해석)

  • 홍성걸;이수곤
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.201-206
    • /
    • 2001
  • This paper presents truss model that can be used to determine the deformation as well as strength of RC members. This model is constituted to address plastic hinge rotation at tile deformation concentrated regions under severe lateral load. The behavior of each element of truss model is evaluated on the basis of stress field analysis. The deformation is obtained by combining element deformations with joint rotation. Initial strength is calculated at the first failure of any element, and strength deterioration after failure depends on the strength reduction of this element. The proposed model will provide useful tools in seismic design of ductility-required members.

  • PDF

Lp error estimates and superconvergence for finite element approximations for nonlinear parabolic problems

  • LI, QIAN;DU, HONGWEI
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.4 no.1
    • /
    • pp.67-77
    • /
    • 2000
  • In this paper we consider finite element mathods for nonlinear parabolic problems defined in ${\Omega}{\subset}R^d$ ($d{\leq}4$). A new initial approximation is taken. Optimal order error estimates in $L_p$ for $2{\leq}p{\leq}{\infty}$ are established for arbitrary order finite element. One order superconvergence in $W^{1,p}$ for $2{\leq}q{\leq}{\infty}$ are demonstrated as well.

  • PDF

Analysis of Fatigue Crack Growth with Thickness Ratio in Weldments (두께比를 考廬한 鎔接部의 疲勞龜裂傳播 解釋)

  • 차용훈;방한서;김덕중
    • Journal of Welding and Joining
    • /
    • v.14 no.5
    • /
    • pp.69-77
    • /
    • 1996
  • This study aims to analyze the S. I. F. K value upon Mode I cracks in a finite-width plate of varying thickness, which is expressed in terms of width ratio ($\omega$), thickness ratio ($\beta$) and non-dimensional crack length (λ) by using the 2-dimensional finite element method. Then, by comparing the effectiveness of the results obtained by the two finite element methods, it is seen that the 2-dimensional finite element method can be used in order to analyse the S. I. F. K values upon a various thickness model. A model is developed in order to analyze the effects of initial residual stress upon the fatigue crack growth behavior in various thickness welded specimens. In this model, crack growth rate da/dN appears to be come small as the thickness ratio with the same ΔK is increased. Also, in the initial step, as ΔK is increased with crack growth rate is decreased and then increased because the repeated compressive residual stress retards crack growth rate.

  • PDF

Thermal Effect on the Vibration Characteristics of Pretwisted Rotating Blade (열 효과를 고려한 비틀림이 있는 회전 블레이드의 진동 특성)

  • Kee, Young-Jung;Kim, Ji-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.810-815
    • /
    • 2002
  • Vibration analysis of rotating blade is the main purpose of this study. In the present work, general formulation is proposed to analyze the rotating shell-type structures including the effect of centrifugal force, Coriolis acceleration and initial twist. Furthermore, simplified equations are derived for the case of an open circular cylindrical shell. Based on the concept of degenerated shell element with the Reissner-Mindlin's assumptions, the finite element method is adopted for solving the governing equations. In addition, it is investigated the effect of thermal load on the vibration characteristics of pretwisted blade. Numerical results are summarized for the various parameters such as rotating speed, angle of pretwist and stacking sequence of a composite blade. Also, present results are compared with the previous works and experimental data.

  • PDF

Free Vibrations of Ocean Cables under Currents (조류력을 받는 해양케이블의 자유진동해석)

  • 김문영;김남일;윤종윤
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.11 no.4
    • /
    • pp.231-237
    • /
    • 1999
  • A geometric non-linear finite element formulation of spatial ocean cable under currents is presented using multiple noded curved cable elements. Tangent stiffness and mass matrices for the isoparametric cable ele¬ment are derived and the initial equilibrium state of ocean cable subjected to self-weights, buoyancy, and current as well as support motions is determined using the load incremental method. Free vibration analysis of ocean cables is performed based on the initial equilibrium configuration. Numerical examples are presented and discussed in order to demonstrate the feasibility of the present finite element method and investigate dynamic characteristics of ocean cables.

  • PDF

Finite Element Analysis of Extrusion Process in Semi-Solid State (반용융 재료의 압출공정에 관한 유한요소 해석)

  • Hwang, Jae-Ho;Go, Dae-Cheol;Min, Gyu-Sik;Kim, Byeong-Min;Choe, Jae-Chan
    • Transactions of Materials Processing
    • /
    • v.7 no.4
    • /
    • pp.364-374
    • /
    • 1998
  • It is the objective of this study to analyze the effect of various process variables on the quality of extruded product and extrusion force for semi-solid extrusion of Al2024 with solid phase structure of globular type by the finite element method. Process variables are initial solid fraction, ram speed, semi-angle of die, and reduction in area. The results of experiment are compared with those of simulation in order to verify the usefulness of the developed finite element program. The flow and deformation of semi-solid alloy are analyzed by coupling by coupling the deformation of porous skeleton and the flow of liquid phase. It is also assumed that initial solid fraction is homogeneous.

  • PDF

Thermal Effect on the Vibration Characteristics of Twisted Rotating Blade (비틀림이 있는 회전블레이드의 열 효과를 고려한 진동 특성)

  • Kee, Young-Jung;Kim, Ji-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.380.1-380
    • /
    • 2002
  • Vibration analysis of rotating blade is the main purpose of present study. In this work, general formulation is proposed to analyze rotating shell type structures including the centrifugal force, Coriolis acceleration and initial twist. Futhermore, simplified equations are derived for the case of an open circular cylindrical shell. Based on the concept of degenerated shell element with the Reissner-Mindlin's assumptions, the finite element method is adopted for solving the governing equations. (onitted)

  • PDF

The Turbulent flow analysis by the Finite Element Method (유한요소법을 이용한 난류유동해석)

  • 황상무
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.253-256
    • /
    • 1999
  • The Streamline Upwind Petrov-Galerkin(SUPG) finite element method is used to solve the two-dimensional laminar and turbulent flow. The flow is simulated by averaged Navier-Stokes equations with a penalty function approach and the lograithmic(k-$\varepsilon$) turbulent model is employed to take into account its turbulent behavior. The near-wall viscous sub-layer model is employed to approach the dominant viscous effects in the near wall zones. To find a good-enough initial guess of the Newton-Raphson iteration solving Nonlinear Matrix the Incremental method is considered for momentum and the Incomplete logarithmic turbu-lent equations for Turbulence. The validation of our method is investigated in comparision with published experimental data.

  • PDF

Design of Weld Line of a Tailor Welded Blank by Inverse Finite Element Analysis (유한요소 역해석을 이용한 Tailor Welded Blank의 용접선 설계)

  • Lee, Choong-Ho;Huh, Hoon;Han, Soo-Sik
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.10a
    • /
    • pp.89-92
    • /
    • 1997
  • Design of a weld line in a tailor welded blank is indispensable for good manufacturing of stamped parts as assigned, since the intial weld line is distorted severely with forming. The initial weld line has to be determined such that desired weld line in a formed part can be obtained. The initial weld line was predicted by inverse finite element analysis from the desired weld line in a formed part. The inverse approach is applied to the cylindrical and square cup drawing with tailor welded blanks. The applications demonstrates that the approach is useful for design of weld line of tailor welded blank.

  • PDF

Operation characteristics of a fault current limiter by high speed interrupter and a superconducting element

  • Im, I.G.;Jung, I.S.;Choi, H.S.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.3
    • /
    • pp.10-14
    • /
    • 2014
  • Due to continuous increase of electric power consumption, couple of resolutions for improving accuracy in power system like line separation are being studied. The increase of the power demand can cause problems such as supply difficulties of the electricity and broadband outages, failure, etc. When a fault occurs in the power system, a fault current also increases. Fault current creates problems like reduction of lifespan and failure on the power system. In order to resolve these problems, the reduction of initial fault current using the characteristics of superconducting element was applied to fault current limiter. We applied the system to high speed fault current limiter. We found that the superconducting element effectively reduced initial fault current and the fault current was limited by changing operation of high speed interrupter.