• Title/Summary/Keyword: initial curing time

Search Result 104, Processing Time 0.027 seconds

Development of Drying Shrinkage Model for HPC Based on Degree of Hydration by CEMHYD-3D Calculation Result (CEMHYD-3D로 예측된 수화도를 기초로 한 고성능 콘크리트의 건조수축 모델제안)

  • Kim Jae Ki;Seo Jong-Myeong;Yoon Young-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.501-504
    • /
    • 2004
  • This paper proposes degree of hydration based shrinkage prediction model of 40MPa HPC. This model shows degree of hydration which is defined as the ratio between the hydrated cement mass and the initial mass of cement is very closely related to shrinkage deformation. In this study, degree of hydration was determined by CEMHYD-3D program of NIST. Verification of the predicted degree of hydration is performed by comparison between test results of compressive strength and estimated one by CEMHYD-3D. Proposed model is determined by statistical nonlinear analysis using the program Origin of Origin Lab. Co. To get coefficients of the model, drying shrinkage tests of four specimen series were followed with basic material tests. Testes were performed in constant temperature /humidity chamber, with difference moisture curing ages to know initial curing time effect. Verification with another specimen, collected construction field of FCM bridge, was given in the same condition as pre-tested specimens. Finally, all test results were compared to propose degree of hydration based model and other code models; AASHTO, ACI, CEB-FIP, JSCE, etc.

  • PDF

Prediction of Setting Time of Concrete Using Fly Ash and Super Retarding Agent (초지연제 및 플라이애쉬를 사용한 콘크리트의 응결시간 예측)

  • Han, Min-Cheol
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.6 s.96
    • /
    • pp.759-767
    • /
    • 2006
  • This paper presents a method to estimate the setting time of concrete using super retarding agent(SRA) and fly ash(FA) under various curing temperature conditions by applying maturity based on equivalent age. To estimate setting time, the equivalent age using apparent activation energy($E_a$) was applied. Increasing SRA content and decreasing curing temperature leads to retard initial and final set markedly. $E_a$ at the initial set and final set obtained by Arrhenius function showed differences in response to mixture type. It is estimated to be from $24{\sim}35KJ/mol$ in all mixtures, which is smaller than that of conventional mixture ranging from $30{\sim}50KJ/mol$. Based on the application of $E_a$ to Freisleben-Hansen and Pederson's equivalent age function, equivalent age is nearly constant, regardless of curing temperature and SRA contents. This implies that the concept of maturity is applicable in estimating the setting time of concrete containing SRA. A high correlation between estimated setting time and measured setting time is observed. Multi-regression model to determine appropriate dosage of SRA reflecting FA contents and equivalent age was provided. Thus, the setting time estimation method studied herein can be applicable to the concrete containing SRA and FA in construction fields.

Fundamental Characteristics of Carbon-Capturing and Sequestering Activated Blast-Furnace Slag Mortar (탄소포집 활성 고로슬래그 모르타르의 기초특성에 관한 연구)

  • Jang, Bong Jin;Kim, Seung Won;Song, Ji Hyeon;Park, Hee Mun;Ju, Min Kwan;Park, Cheolwoo
    • International Journal of Highway Engineering
    • /
    • v.15 no.2
    • /
    • pp.95-103
    • /
    • 2013
  • PURPOSES : To investigate the fundamental characteristics of blast-furnace slag mortar that was hardened with activating chemicals to capture and sequester carbon dioxide. METHODS : Various mix proportions were considered to find an appropriate stregnth development in regards with various dosages of activating chemicals, calcium hydroxides and sodium silicates, and curing conditions, air-dried, wet and underwater conditions. Flow characteristics was investigated and setting time of the mortar was measured. At different ages of 3, 7 and 28days, strength development was investigated for all the mix variables. At each age, samples were analyzed with XRD. RESULTS : The measured flow values showed the mortar lost its flowability as the activating chemicals amount increased in the scale of mole concentration. The setting time of the mortar was relatively shorter than OPC mortar but the initial curing condition was important, such as temperature. The amount of activating chemicals was found not to be critical in the sense of setting time. The strength increased with the increased amount of chemicals. The XRD analysis results showed that portlandite peaks reduced and clacite increased as the age increased. This may mean the $Ca(OH)_2$ keeps absorbing $CO_2$ in the air during curing period. CONCLUSIONS : The carbon capturing and sequestering activated blast-furnace slag mortar showed successful strength gain to be used for road system materials and its carbon absorbing property was verified though XRD analysis.

Characteristics of Mortar at Low Temperature with De-icing Agency (시판 방동제의 저온 양생된 모르타르 특성)

  • 유성원;서정인
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.33-38
    • /
    • 2002
  • Concrete placed under cold weather has some defects such as the decrease of initial strength by hydration delay, strength unrecovery at unhardened concrete freezing, and structural failure and crack by expansion pressure. So, in this study, we tried to evaluate the JIS mortar which was made under cold weather using de-icing agency. In mortar test, the do-icing agency increased compressive strength under standard curing, and the de-icing agency made by NaNO$_2$ gave the highest strength. However, as pre-curing time under 21$^{\circ}C$ was short, the de-icing agency made by NaNO$_2$ and Ca[NO$_3$]$_2$ had the highest strength.

  • PDF

Investigating the long-term behavior of creep and drying shrinkage of ambient-cured geopolymer concrete

  • Asad Ullah Qazi;Ali Murtaza Rasool;Iftikhar Ahmad;Muhammad Ali;Fawad S. Niazi
    • Structural Engineering and Mechanics
    • /
    • v.89 no.4
    • /
    • pp.335-347
    • /
    • 2024
  • This study pioneers the exploration of creep and shrinkage behavior in ambient-cured geopolymer concrete (GPC), a vital yet under-researched area in concrete technology. Focusing on the influence of sodium hydroxide (NaOH) solution concentration, the research utilizes low calcium fly ash (Class-F) and alkaline solutions to prepare two sets of GPC. The results show distinct patterns in compressive strength development and dry shrinkage reduction, with a 14 M NaOH solution demonstrating a 26.5% lower dry shrinkage than the 16 M solution. The creep behavior indicated a high initial strain within the first 7 days, significantly influenced by curing conditions and NaOH concentration. This study contributes to the existing knowledge by providing a deeper understanding of the time-dependent properties of GPC, which is crucial for optimizing its performance in structural applications.

Mechanical behaviours of biopolymers reinforced natural soil

  • Zhanbo Cheng ;Xueyu Geng
    • Structural Engineering and Mechanics
    • /
    • v.88 no.2
    • /
    • pp.179-188
    • /
    • 2023
  • The mechanical behaviours of biopolymer-treated soil depend on the formation of soil-biopolymer matrices. In this study, various biopolymers(e.g., xanthan gum (XG), locust bean gum (LBG), sodium alginate (SA), agar gum (AG), gellan gum (GE) and carrageenan kappa gum (KG) are selected to treat three types of natural soil at different concentrations (e.g., 1%, 2% and 3%) and curing time (e.g., 4-365 days), and reveal the reinforcement effect on natural soil by using unconfined compression tests. The results show that biopolymer-treated soil obtains the maximum unconfined compressive strength (UCS) at curing 14-28 days. Although the UCS of biopolymer-treated soil has a 20-30% reduction after curing 1-year compared to the maximum value, it is still significantly larger than untreated soil. In addition, the UCS increment ratio of biopolymer-treated soil decreases with the increase of biopolymer concentration, and there exists the optimum concentration of 1%, 2-3%, 2%, 1% and 2% for XG, SA, LBG, KG and AG, respectively. Meanwhile, the optimum initial moisture content can form uniformly biopolymer-soil matrices to obtain better reinforcement efficiency. Furthermore, the best performance in increasing soil strength is XG following SAand LBG, which are significantly better than AG, KG and GE.

Effects of the Water Reducing Agent on the Concrete (減水劑가 콘크리트에 미치는 影響)

  • Kim, Jong-Cheon;Doh, Duk-Hyun
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.24 no.2
    • /
    • pp.67-75
    • /
    • 1982
  • A study on the effect of water reducing agent on the various characteristics of concrete has been conducted. The experimental results of the study are summarized as follows. 1. Slump test for the concrete added water reducing setretarding agent in proper quantity have been conducted. According to the test results, the decreasing rate of slump value become bigger than plain concrete with increase of the unit weight of cement and elapse of time 2. In case the proper quantity content of maximum compressive strength in Fig. 5 of water reducing set retarding agent is added, unit weight of water is decreased about 15% or so as compared with plain concrete. with the increase of water reducing set accelerating agent content unit weight of water is decreased much more, And other hand, amount of air entraining shows the increasing tendency with the increase of water reducing agent content. 3. The adding rate of water reducing agent which produce maximum strength shows that WR-CH and WR-SA which is water reducing set-starding agent is 0.2% and WR-CO is 0.5% and that WS-PO which is water reducing set accelerating agent is 0.5 4. compressive strength jof the concrete made of sulfate resistant cement shows less than the strength of normal portland cement at initial strength but the strength of both cement shows almost same at curing age of 28 days. 5. when proper quantity of water reducing set retarding agent is used, boned strength is increased about 15% at curing age of 28days. 6. According to the result of durability test, dynamic young's mudulus of elasticity at plain concrete is decreased about 50% as compared with initial step at 300 cycle of freezing and thawing after curing age of days. on the contarary the concrete used water reducing agent is decreased less than 7%.

  • PDF

Selection of the optimum mixture condition for stabilization of Songdo silty clay (송도 지역 해양성 점토 고화처리를 위한 최적배합 조건의 선정)

  • Kim, Jun-Young;Jang, Eui-Ryong;Chung, Choong-Ki;Lee, Yong-Jun;Jang, Soon-Ho;Choi, Jung-Yeul
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.412-419
    • /
    • 2009
  • Large quantity of extra soils discharged from excavation site in Songdo area can be treated by hardening agents and utilized in surface stabilized layer overlying thick reclaimed soft soil deposit. Though surface layer stabilization method using cement or lime for very soft soils has been studied in recent years, but studies on moderately soft clayey silt has not been tried. The purpose of this research is to investigate optimum mixing condition for stabilizing Songdo marine soil with low plasiticity. The optimum mixing conditions of hardening agents with Songdo soil such as kind of agents, mixing ratio, initial water content and curing time are investigated by uniaxial compression test and laboratory vane test. The results indicate that strength increases with high mixing ratio and long curing time, while decreases drastically under certain water content before mixing. Finally, optimum mixing condition considering economic efficiency and workability with test results was proposed.

  • PDF

Setting Time Prediction of Super Retarding Concrete Using Improved Durometer (개량형 듀로미터를 이용한 초지연 콘크리트의 응결시간 분석)

  • Han, Soo-Hwan;Choi, Yoon-Ho;Yeun, Kyu-Won;Kim, Jong;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.73-74
    • /
    • 2020
  • In this study, the feasibility of the durometer into super retarding concrete was studied by comparing the penetration resistance with the hardness of each durometer using the penetration resistance and the improved Durometer and Durometer A-Type according to the ultra-delay mixture rate. The test results showed that initial setting time by improved Durometer and Durometer A-Type were fixed at 25, 50 HD, respectively, and the 35, 80 HD showed at final setting time. It was also found that the use of the durometer can be available to measure the setting time of the concrete.

  • PDF

Estimation of Setting Time of Concrete Using Rubber Hardness Meter (고무경도계를 이용한 콘크리트의 응결시간 추정 가능성 분석)

  • Han, Min-Cheol;Han, In-Deok;Shin, Yong-Sub
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.4
    • /
    • pp.358-366
    • /
    • 2019
  • The purpose of this study is to explore the possibility of estimating optimum surface finishing work time of the fresh concrete placed at the job site by applying a surface hardness test meter(Durometer). Tests are carried out by measuring and comparing the Proctor penetration resistance test and hardness test by Durometer. Correlations between Procter penetration test and hardness test by Durometer were obtained. Two different types Durometer were applied to estimate setting time. Test results indicate that the measurement of the Durometer and the test of the Proctor penetration resistance are highly correlated. When measuring the initial setting time with Durometer, initial setting time is reached when the hardness value by the type C Durometer is reached around 42HD, and when final setting is measured with the type D Durometer, the surface finishing work time limit and curing time can be estimated with 10HD of Durometer.