• Title/Summary/Keyword: initial control

Search Result 4,106, Processing Time 0.044 seconds

Silicon/Carbon Composites Having Bimodal Mesopores for High Capacity and Stable Li-Ion Battery Anodes (고용량 고안정성 리튬 이차전지 음극소재를 위한 이중 중공을 갖는 실리콘/탄소 복합체의 설계)

  • Park, Hongyeol;Lee, Jung Kyoo
    • Clean Technology
    • /
    • v.27 no.3
    • /
    • pp.223-231
    • /
    • 2021
  • In order to address many issues associated with large volume changes of silicon, which has very low electrical conductivity but offers about 10 times higher theoretical capacity than graphite (Gr), a silicon nanoparticles/hollow carbon (SiNP/HC) composite having bimodal-mesopores was prepared using silica nanoparticles as a template. A control SiNP/C composite without a hollow structure was also prepared for comparison. The physico-chemical and electrochemical properties of SiNP/HC were analyzed by X-ray diffractometry, X-ray photoelectron spectroscopy, nitrogen adsorption/desorption measurements for surface area and pore size distribution, scanning electron microscopy, transmission electron microscopy, galvanostatic cycling, and cyclic voltammetry tests to compare them with those of the SiNP/C composite. The SiNP/HC composite showed significantly better cycle life and efficiency than the SiNP/C, with minimal increase in electrode thickness after long cycles. A hybrid composite, SiNP/HC@Gr, prepared by physical mixing of the SiNP/HC and Gr at a 50:50 weight ratio, exhibited even better cycle life and efficiency than the SiNP/HC at low capacity. Thus, silicon/carbon composites designed to have hollow spaces capable of accommodating volume expansion were found to be highly effective for long cycle life of silicon-based composites. However, further study is required to improve the low initial coulombic efficiency of SiNP/HC and SiNP/HC@Gr, which is possibly because of their high surface area causing excessive electrolyte decomposition for the formation of solid-electrolyte-interface layers.

Ecological Characteristics and Changes in Plant Community Structure in Mt. Cheongryang, Incheon (인천시 청량산의 생태적 특성과 식생구조의 변화)

  • Lee, Sang-Hee;Han, Bong-Ho;Park, Seok-Cheol
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.49 no.2
    • /
    • pp.74-88
    • /
    • 2021
  • In the present study, the characteristics and changes in the vegetation of Mt. Cheongryang, Inchon, were examined to identify and determine appropriate ways to restore the health of the urban forest and to preserve its vegetation. The vegetation of the community of Quercus mongolica (Mongolian oak) on Mt. Cheongryang appeared to decrease in response to the control of the wilt disease of oak trees. The communities of Sorbus alnifolia (Korean mountain ash) and Styrax japonicus (Snowbell tree) have increased. Pinus rigida (Pitch Pine) had its overall territory decrease, but the current state of the Pinus rigida (Pitch Pine) was estimated to be stable due to its dominance as a tree layer species. In regards to Robinia pseudoacacia (Black Locust), the urbanized species of Sorbus alnifolia (Korean mountain ash), and Styrax japonicus (Snowbell tree), their areas have increased with the appearance of Magnolia obovate (Whiteleaf Japanese Magnolia). The biodiversity of Mt. Cheongryang has decreased by simplifying species in the tree layer and understory species thereof, and the initial success of species in marginal areas has increased. The absence of potential succession was attributed to the termination of ecological succession; thereby, the current vegetation structure was concluded to be remaining as it is for the time being. Soil texture in the mountain primarily consisted of sandy loam or loamy sand; the pH of the soil was in the range 4.26-4.86, rendering a mean pH of 4.59. The content of organic matter (O.M.) appeared having a distributing range of 2.18-9.60%, rendering a mean value of 4.33%. To promote species diversity, several methods are suggested, such as prevention of soil acidification, selecting nationally-grown trees from moist soil or valleys for afforestation, preventing species appearing due to urbanization or excessive growth, protecting the understory vegetation and species with hygropreference, and managing the forest to maintain a multi-layered vegetation structure.

Enterprise Competitiveness and Corporate Performance Creation Strategies by Stage of Growth on Firm (벤처기업의 성장단계별 기업경쟁력 및 기업 성과 창출 전략)

  • Park, DaIn;Park, ChanHi
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.13 no.6
    • /
    • pp.177-189
    • /
    • 2018
  • Business environment is always full of challenges. Despite various strategic efforts, there are so many failure cases of misfit. With the weaker resource base and institutional foundation, startup firms find it more difficult to find the right spot in the stiff competition. In the middle of evolutionary process, the startup firms need proper strategies meeting the differential challenges along the multiple stages of growth. Following the idea of product life cycle, this study applies the four stages of growth-startup, initial growth, accelerated growth, matured, and decliing. The next step for the startup manager is meeting each stage of growth with proper strategic efforts, including strategy, structure, decision-making pattern, and control method. When the knowledge factor is introduced, there is a potential for higher performance. Based on the 'Detailed Survey on Startup Ventures in 2017,' this study explores the impact of the government subsidy program on the firm competitiveness and performance-along the four stages of growth. In each stage, the strategy factors showed differential impact.

Study on Influence Analysis of Radioactive Terror Scenarios by Weather Conditions (기상조건에 따른 방사능테러 시나리오 영향 분석)

  • Kim, Tae Woo;Jeon, Yeo Ryeong;Chang, Sunyoung;Kim, Yongmin
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.6
    • /
    • pp.719-725
    • /
    • 2018
  • After 9/11 attacks in the U.S, Terrorism has increased the number of unspecified casualties through multi-use facility terror attacks compared to the past. The subsequent London bombings and the self-destruction of Pakistan increased people's fear and social anxiety. As international events have been held in Korea recently, awareness and concern over radioactive terrorism and security management of radioactive materials are increasing. In this paper, we compared the results of different meteorological conditions using HotSpot Code. After creating a possible terror scenario in Korea, sources likely to be use in RDD and Dirty bomb were investigated. The meteorological condition was selected by comparing the Pasquill-Gifford stability class with the most stable condition F and the most unstable condition A. The result value of the A and F condition through simulation were shown not to cause citizens to die from acute effects due to radiological effects. The range of radioactivity is different according to the wind speed and the meteorological stability, and the degree of radioactivity dilution is different according to meteorological conditions. Analysis results are expected to be used for initial response in the event of a radioactive terrorist attack.

The Effect of Children's Beverages on Degradation of Dental Resin-Based Pit and Fissure Sealant (어린이 음료가 레진계 치면열구전색제의 화학적 분해에 미치는 영향)

  • Min, Hee-Hong;Kim, Hyun-Jin;Lee, Hye-Jin
    • Journal of dental hygiene science
    • /
    • v.18 no.6
    • /
    • pp.367-373
    • /
    • 2018
  • The consumption of beverages among children is rising. The purpose of this study was to examine the effect of kid's drink on dental resin-based pit and fissure sealant. Pororo, I-kicker, Sunkist kids were included in the experimental groups, and Samdasu was included in the control group. A conventional dental sealant material ($Clinpro^{TM}Sealant^{(R)}$) was selected for this study. Resin specimens (8 mm in diameter and 1 mm in thickness) were prepared according to manufacturers' instructions and the initial roughness (Ra) was then measured. The pH of all the four groups was measured using a pH meter. The specimens were individually immersed in 5 ml of the experimental solutions and stored at $37^{\circ}C$ for 72 hours. Following this, the surface roughness of the resin specimens was measured by Surftest. The concentration of residual monomer released was determined by high performance liquid chromatography (HPLC). The surface morphology of the resin specimen was evaluated before and after storage by scanning electron microscopy (SEM). Data were statistically analyzed using Kruskal-Wallis and Duncan's test. The results showed that all the children's beverages examined in this study contained citric acid. The pH of I-kicker was the lowest ($3.03{\pm}0.01$), followed by that of Sunkist kids ($3.26{\pm}0.02$) and Pororo ($3.47{\pm}0.02$). We observed an increase in the surface roughness of resin specimens after 72 h of immersion in all the beverages tested (p<0.05). There was matrix degradation after immersion, visualized on SEM image, in all the beverage groups. Bisphenol-A-glycidyl methacrylate was not detected after 72 hours, but triethylene glycol dimethacrylate levels were increased in all the beverages tested during the 72 hours by HPLC. These results suggest that intake of beverages containing acid can cause degradation of the resin-based pit and fissure sealants in children.

Intelligent Smart Farm A Study on Productivity: Focused on Tomato farm Households (지능형 스마트 팜 활용과 생산성에 관한 연구: 토마토 농가 사례를 중심으로)

  • Lee, Jae Kyung;Seol, Byung Moon
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.14 no.3
    • /
    • pp.185-199
    • /
    • 2019
  • Korea's facility horticulture has developed remarkably in a short period of time. However, in order to secure international competitiveness in response to unfavorable surrounding conditions such as high operating costs and market opening, it is necessary to diagnose the problems of facility horticulture and prepare countermeasures through analysis. The purpose of this study was to analyze the case of leading farmers by introducing information and communication technology (ICT) in hydroponic cultivation agriculture and horticulture, and to examine how agricultural technology utilizing smart farm and big data of facility horticulture contribute to farm productivity. Crop growth information gathering and analysis solutions were developed to analyze the productivity change factors calculated from hydroponics tomato farms and strawberry farms. The results of this study are as follows. The application range of the leaf temperature was verified to be variously utilized such as house ventilation in the facility, opening and closing of the insulation curtain, and determination of the initial watering point and the ending time point. Second, it is necessary to utilize water content information of crop growth. It was confirmed that the crop growth rate information can confirm whether the present state of crops is nutrition or reproduction, and can control the water content artificially according to photosynthesis ability. Third, utilize EC and pH information of crops. Depending on the crop, EC values should be different according to climatic conditions. It was confirmed that the current state of the crops can be confirmed by comparing EC and pH, which are measured from the supplied EC, pH and draining. Based on the results of this study, it can be confirmed that the productivity of smart farm can be affected by how to use the information of measurement growth.

Factors and Their Correlation with Injury Severity of Elderly Pedestrian Traffic Accidents

  • Hyun, Tae gyu;Yeom, Seok-Ran;Park, Sung-Wook;Lee, Deasup;Kim, Hyung bin;Wang, Il Jae;Bae, Byung Gwan;Song, Min keun;Cho, Youngmo
    • Journal of Trauma and Injury
    • /
    • v.32 no.3
    • /
    • pp.143-149
    • /
    • 2019
  • Purpose: No previous study has assessed elderly pedestrian traffic accidents based on a nationwide database. This study aimed to help primary physicians who examine patients in emergency departments to determine and make prompt and accurate treatment decisions. Methods: This study used data from the Emergency Department-based Injury Indepth Surveillance from 2013 to 2017, managed by the Korea Centers for Disease Control and Prevention. Pedestrians aged ${\geq}65years$ were included, and using multivariate logistic regression multiple factors were analyzed to determine their relationship with injury severity. Results: Of 227,695 subjects, 6,498 were included, of whom 2,065 (31.8%) were severely injured. There were more female than male patients in all severity groups. Most accidents occurred in the afternoon and on general roads. In the multivariate analysis, the odds ratio (OR) of injury severity for male pedestrians was 1.165 (95% confidence interval: 1.034-1.313, p=0.012). Older age of patients and the use of ambulances were associated with greater injury severity. The accident time affected the degree of injury severity; i.e., compared to dawn, injury severity increased in the morning (OR: 1.246, p=0.047) and decreased at night (OR: 0.678, p<0.001). A significant difference was noted in the correlation between the type of vehicle causing the accident and the accident severity; i.e., motorcycle accidents had lower severity than bicycle accidents (OR: 0.582, p=0.047). Conclusions: Injury severity was correlated with sex, age, transportation to the ED, TA onset time, and type of vehicle. The study results suggest that injury severity may be positively reflected in initial assessments and overall integrated treatments by physicians and in the related policies.

Annual Variability in Nitrous Oxide Emission from Agricultural Field Soils (농경지 아산화질소 배출계수의 연간 변동 특성 분석)

  • Hyun, Junge;Yoo, Sin Yee;Yang, Xing Ya;Lee, Jong Eun;Yoo, Gayoung
    • Journal of Climate Change Research
    • /
    • v.8 no.4
    • /
    • pp.305-312
    • /
    • 2017
  • We aimed at investigating the difference in $N_2O$ emission factors of chemical and organic fertilizers and identifying the main factors influencing annual fluctuations in $N_2O$ emission. We conducted two-year experiments in 2016 and 2017 in an agricultural field planted with sweet potato (Ipomoea batatas). Treatments included chemical NPK fertilizer (NPK) and chicken compost application at $10\;ton\;ha^{-1}$, $20\;ton\;ha^{-1}$, and $30\;ton\;ha^{-1}$ rates (CK1, CK2 and CK3). Control was also employed with no addition. Results showed that $N_2O$ emission rates were significantly related with soil water status and soil available N contents. Significant correlation between % water filled pore space (WFPS) and $N_2O$ emission was observed only when the %WFPS was greater than 40% and during the initial stage of the experiment (<60 d). Comparison of the emission factors in 2016 and 2017 showed us that the emission factor was greater in 2016 when the %WFPS was maintained higher by 16.5% compared to that in 2017. In 2016, the emission factor of organic fertilizer was higher than that of chemical fertilizer, while in 2017, the pattern was reversed. Annual variability in $N_2O$ emission could also be originated from the available N contents remaining in soil after being taken up by plants. If we apply excessive N fertilizer, the soil would contain excess amount of N which was not uptaken by plants, leading to a huge increase in $N_2O$ emission. This case would overestimate emission factor, which was the case for the organic fertilizer in 2016. Over-fertilization should be avoided when we set up an experiment to determine $N_2O$ emission factor.

Single Photo Resection Using Cosine Law and Three-dimensional Coordinate Transformation (코사인 법칙과 3차원 좌표 변환을 이용한 단사진의 후방교회법)

  • Hong, Song Pyo;Choi, Han Seung;Kim, Eui Myoung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.3
    • /
    • pp.189-198
    • /
    • 2019
  • In photogrammetry, single photo resection is a method of determining exterior orientation parameters corresponding to a position and an attitude of a camera at the time of taking a photograph using known interior orientation parameters, ground coordinates, and image coordinates. In this study, we proposed a single photo resection algorithm that determines the exterior orientation parameters of the camera using cosine law and linear equation-based three-dimensional coordinate transformation. The proposed algorithm first calculated the scale between the ground coordinates and the corresponding normalized coordinates using the cosine law. Then, the exterior orientation parameters were determined by applying linear equation-based three-dimensional coordinate transformation using normalized coordinates and ground coordinates considering the calculated scale. The proposed algorithm was not sensitive to the initial values by using the method of dividing the longest distance among the combinations of the ground coordinates and dividing each ground coordinates, although the partial derivative was required for the nonlinear equation. In addition, since the exterior orientation parameters can be determined by using three points, there was a stable advantage in the geometrical arrangement of the control points.

Evaluation of Durability Performance in Concrete Incorporating Low Fineness of GGBFS (3000 Grade) (저분말도 고로슬래그 미분말(3000급)을 혼입한 콘크리트의 내구성능평가)

  • Lee, Seung-Heun;Cho, Sung-Jun;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.4
    • /
    • pp.96-102
    • /
    • 2019
  • When GGBFS(Ground Granulated Blast Furnace Slag) with high blaine is incorporated in concrete, compressive strength in the initial period is improved, but several engineering problems arise such as heat of hydration and quality control. In this paper, compressive strength and durability performance of concrete with 3,000 Grade-low fineness slag are evaluated. Three conditions of concrete mixtures are considered considering workability, and the related durability tests are performed. Although the strength of concrete with 3,000 Grade slag is slightly lower than the OPC(Ordinary Portland Cement) concrete at the age of 28 days, but insignificant difference is observed in long-term compressive strength due to latent hydration activity. The durability performances in concrete with low fineness slag show that the resistances to carbonation and freezing/thawing action are slightly higher than those of concrete with high fineness slag, since reduced unit water content is considered in 3,000 Grade slag mixture. For the long-term age, the chloride diffusion coefficient of the 3000-grade slag mixture is reduced to 20% compared to the OPC mixture, and the excellent chloride resistance are evaluated. Compared with concrete with OPC and high fineness GGBFS, concrete with lower fineness GGBFS can keep reasonable workability and durability performance with reduced water content.