• 제목/요약/키워드: initial cell density

검색결과 185건 처리시간 0.025초

배선 전용 영역을 이용한 계층적 배치 (Hierarchical placement with routing region assignment)

  • 김원종;신현철
    • 전자공학회논문지A
    • /
    • 제32A권2호
    • /
    • pp.130-139
    • /
    • 1995
  • A hierarchical placement system based on routing region assignment has been developed to increase the probability of routing completion after placement. While most of the existing placement systems attempt to reduce the cell density at the portions where routing density is high, our method is distinguished in that specific routing regions are allocated to secure complete routing where the routing density is greater than the routing capacity. Hierarchy is vuilt by clustering and recursive paritioning, and the initial placement obtained by partitioning at each level is improved by using the region refinement algorithm. After placement at each hierarchical level, global routing is performed and fouting regions are assigned, if routing density is greater than routing capacity, to be considered at the next level of placement. the proposed algorithm has been implemented and applied to place several industrical gate-array circuits. A couple of circuits which cannot be routed by using conventional placement techniques can be completely routed by using our new placement technique with routing region assignment.

  • PDF

잿빛공팜이에 대한 길항균 Bacillus Iicheniformis N1의 배양적 특성 (Cultural Characteristics of Antagonistic Bacterium, Bacillus licheniformis N1 against Botrytis cinerea)

  • 이재필;문병주
    • 생명과학회지
    • /
    • 제11권2호
    • /
    • pp.173-180
    • /
    • 2001
  • This study was conducted to estimate the cultural characteristics, the production of antibiotic, and the selection of optimal media for mass culture of Bacillus licheniformis N1 isolate which was previously reported as an antagonistic bacterium to Botrytis cinerea. We investigated initial pH, temperatures and shaking speed for good cultural conditions and antibiotics production by N1 isolate. According to the results, the optimal conditions of initial pH, temperatures, and shaking speed were determined to be pH 5.0~5.5, 30~35$^{\circ}C$ and 250 rpm, respectively. Also, the optimal conditions for the antagonism by N1 isolate highly appeared in the initial pH as 5.0, and the mycelial growth inhibition was high when the substances used such as glucose or corn starch as carbon sources, and biji(soybean curd residue) flour as a nitrogen source. Furthermore, inhibitory area was significantly expanded, when 3% or 5% of corn starch was added into 5% of Biji flour as nitrogen source, were respectivley selected for mass culture of N1 isolate. Among them, 5% Biji flour medium showed higher cell density more than 10 times that in NB medium after 48 hour incubation. Therefore, the optimal medium was determined as 5% biji flour added 3~5% of corn starch for high density of cells.

  • PDF

Electrochemical Catalytic Behavior of Cu2O Catalyst for Oxygen Reduction Reaction in Molten Carbonate Fuel Cells

  • Song, Shin Ae;Kim, Kiyoung;Lim, Sung Nam;Han, Jonghee;Yoon, Sung Pil;Kang, Min-Goo;Jang, Seong-Cheol
    • Journal of Electrochemical Science and Technology
    • /
    • 제9권3호
    • /
    • pp.195-201
    • /
    • 2018
  • To enhance the performance of cathodes at low temperatures, a Cu-coated cathode is prepared, and its electrochemical performance is examined by testing its use in a single cell. At $620^{\circ}C$ and a current density of $150mAcm^{-2}$, a single cell containing the Cu-coated cathode has a significantly higher voltage (0.87 V) during the initial operation than does that with an uncoated cathode (0.79 V). According to EIS analysis, the high voltage of the cell with the Cu-coated cathode is due to the dramatic decrease in the high-frequency resistance related to electrochemical reactions. From XPS analysis, it is confirmed that the Cu is initially in the form of $Cu_2O$ and is converted into CuO after 150 h of operation, without any change in the state of the Ni or Li. Therefore, the high initial cell voltage is confirmed to be due to $Cu_2O$. Because $Cu_2O$ is catalytically active toward $O_2$ adsorption and dissociation, $Cu_2O$ on a NiO cathode enhances cell performance and reduces cathode polarization. However, the cell with the Cu-coated cathode does not maintain its high voltage because $Cu_2O$ is oxidized to CuO, which demonstrates similar catalytic activity toward $O_2$ as NiO.

A Separator with Activated Carbon Powder Layer to Enhance the Performance of Lithium-Sulfur Batteries

  • Vu, Duc-Luong;Lee, Jae-Won
    • 한국분말재료학회지
    • /
    • 제25권6호
    • /
    • pp.466-474
    • /
    • 2018
  • The high theoretical energy density ($2600Wh\;kg^{-1}$) of Lithium-sulfur batteries and the high theoretical capacity of elemental sulfur ($1672mAh\;g^{-1}$) attract significant research attention. However, the poor electrical conductivity of sulfur and the polysulfide shuttle effect are chronic problems resulting in low sulfur utilization and poor cycling stability. In this study, we address these problems by coating a polyethylene separator with a layer of activated carbon powder. A lithium-sulfur cell containing the activated carbon powder-coated separator exhibits an initial specific discharge capacity of $1400mAh\;g^{-1}$ at 0.1 C, and retains 63% of the initial capacity after 100 cycles at 0.2 C, whereas the equivalent cell with a bare separator exhibits a $1200mAh\;g^{-1}$ initial specific discharge capacity, and 50% capacity retention under the same conditions. The activated carbon powder-coated separator also enhances the rate capability. These results indicate that the microstructure of the activated carbon powder layer provides space for the sulfur redox reaction and facilitates fast electron transport. Concurrently, the activated carbon powder layer traps and reutilizes any polysulfides dissolved in the electrolyte. The approach presented here provides insights for overcoming the problems associated with lithium-sulfur batteries and promoting their practical use.

Suspension culture system을 이용한 hematopoietic stem cell의 expansion

  • 권준;김미정;김병수;박홍우
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2001년도 추계학술발표대회
    • /
    • pp.475-478
    • /
    • 2001
  • 체외에서 hematopoietic cells의 배양은 필수이식으로 하여금 hematopoietic malignancies로 인해 고통받는 환자들을 치료할 수 있다. 본 실험에서는 골수의 초기 농도$1.5{\times}10^6cells/ml$로 하여 IL-3(5ng/ml), SCF(5ng/ml)과 FL(25ng/ml)의 성장 인자들을 첨가함으로써 bone marrow의 전체 cell의 증식은 생성시키지 못 했지만 LTC-IC는 3.6배의 증식을 가져왔다.

  • PDF

배지조성 최적화를 통한 Alcaligenes eutrophus의 고농동 세포배양 및 Poly$\beta$-hydroxybutyrate 생산 (High Cell Density Culture of Alcaligenes eutrophus and Poly-$\beta$-hydroxybutyrate Production by Optimization of Medium Compositions)

  • 이용우;유영제
    • 한국미생물·생명공학회지
    • /
    • 제22권4호
    • /
    • pp.401-406
    • /
    • 1994
  • The medium compositions of Alcaligenes eutrophus were optimized for increasing PHB productivity. It is very important to optimize the concentrations of inorganic salts and trace eleme- nts as well as carbon and nitrogen sources to maximize cell growth rate and productivity. The fed-batch culture of Alcaligenes eutrophus by dual feeding of ammonia water and glucose under optimized initial medium concentrations was carried out. Glucose was fed manually according to glucose consumption rate and ammonia water by pH-stat. The final cell concentrations and PHB content in 30 hours were 122 g/l and 65% of dry cell weight(yielding 79 g of PHB/l), respectively and 2.64 g/l/hr of PHB production rate was obtained.

  • PDF

Electric power generation from treatment of food waste leachate using microbial fuel cell

  • Wang, Ze Jie;Lim, Bong Su
    • Environmental Engineering Research
    • /
    • 제22권2호
    • /
    • pp.157-161
    • /
    • 2017
  • Simultaneous treatment of food waste leachate and power generation was investigated in an air-cathode microbial fuel cell. A TCOD removal efficiency of $95.4{\pm}0.3%$ was achieved for an initial COD concentration of 2,860 mg/L. Maximum power density ranged was maximized at $1.86W/m^3$, when COD concentration varied between 60 mg/L and 2,860 mg/L. Meanwhile, columbic efficiency was determined between 1.76% and 11.07% for different COD concentrations. Cyclic voltammetric data revealed that the oxidation peak voltage occurred at -0.20 V, shifted to about -0.25 V. Moreover, a reduction peak voltage at -0.45 V appeared when organic matters were exhausted, indicating that reducible matters were produced during the decomposition of organic matters. The results showed that it was feasible to use food waste leachate as a fuel for power generation in a microbial fuel cell, and the treatment efficiency of the wastewater was satisfied.

튜브식 겔형 납축전지에 있어서 활물질 밀도에 따른 싸이클 수명 특성 (Influence of Filling Density in the Positive Active-material on the Cycle-life Performance of the Tubular Type Gelled Valve Regulated Lead Acid Batteries)

  • 윤연섭;김병관;이수;김규태
    • 공업화학
    • /
    • 제10권3호
    • /
    • pp.415-418
    • /
    • 1999
  • 튜브식 양극판과 겔전해액을 사용한 VRLA (valve regulated Iead-acid) 전지에 있어서 양극 활물질 (active material)의 충전 밀도에 따른 충 방전 싸이클 특성을 고찰하였다. VRLA전지에 사용된 양극 활물질의 밀도는 각각 3.2g/mL, 3.4g/mL 및 3.6g/ml 이었다. VRLA전지는 IU 방식 ($I_{max}=0.2C_{10}/10$, 상한 전압 2.40 v/cell)의 충전과, D.O.D 100%/C5의 방전 방법으로 충 방전 싸이클 수명 시험을 실시하였다. 시험은 $25{\pm}1^{\circ}C$의 항온항습기에서 실행하였다. 시험 결과 활물질 밀도별 VRLA전지의 초기 용량은 밀도와 무관하였다. 즉 3.4g/mL에서 가장 우수하였고, 3.6g/mL에서 가장 낮았다. 충 방전 싸이클에서의 특성은 3.6g/mL인 전지는 3.4g/mL와 거의 유사하였고, 3.2g/mL보다는 크게 우수하였다. 또한 VRLA 전지의 수분고갈 및 열화는 양극 활물질의 충전 밀도가 높을수록 적었다. 이상으로 충 방전 싸이클용 VRLA전지의 양극 활물질의 밀도는 3.4~3.6g/mL이 적절한 것으로 판단되었다.

  • PDF

The Effects of Physicochemical Factors and Cell Density on Nitrite Transformation in a Lipid-Rich Chlorella

  • Liang, Fang;Du, Kui;Wen, Xiaobin;Luo, Liming;Geng, Yahong;Li, Yeguang
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권12호
    • /
    • pp.2116-2124
    • /
    • 2015
  • To understand the effects of physicochemical factors on nitrite transformation by microalgae, a lipid-rich Chlorella with high nitrite tolerance was cultured with 8 mmol/l sodium nitrite as sole nitrogen source under different conditions. The results showed that nitrite transformation was mainly dependent on the metabolic activities of algal cells rather than oxidation of nitrite by dissolved oxygen. Light intensity, temperature, pH, NaHCO3 concentrations, and initial cell densities had significant effects on the rate of nitrite transformation. Single-factor experiments revealed that the optimum conditions for nitrite transformation were light intensity: 300 μmol/m2/s; temperature: 30℃ pH: 7-8; NaHCO3 concentration: 2.0 g/l; and initial cell density: 0.15 g/l; and the highest nitrite transformation rate of 1.36 mmol/l/d was achieved. There was a positive correlation between nitrite transformation rate and the growth of Chlorella. The relationship between nitrite transformation rate (mg/l/d) and biomass productivity (g/l/d) could be described by the regression equation y = 61.3x (R2 = 0.9665), meaning that 61.3 mg N element was assimilated by 1.0 g dry biomass on average, which indicated that the nitrite transformation is a process of consuming nitrite as nitrogen source by Chlorella. The results demonstrated that the Chlorella suspension was able to assimilate nitrite efficiently, which implied the feasibility of using flue gas for mass production of Chlorella without preliminary removal of NOX.

The Effect of Glutamine on Production of Tissue-type Plasminogen Activator from Recombinant Human Melanoma Cells in Glutamine-limited Fed-batch Cultivation

  • Kim, Hyun-Goo;Kim, Tae-Ho;Kim, Dae-Seok;Park, Kyung-Yu;Park, jin-seo;Ahn, Chol;Lee, Jin-Ha;Lee, Hyeon-Yong
    • Journal of Microbiology and Biotechnology
    • /
    • 제6권4호
    • /
    • pp.295-298
    • /
    • 1996
  • Under glutamine-limited condition, $2\times10^6$ (viable cells/ml) of maximum cell density and 13.5 ($\mu g$/ml) of tissue-type Plasminogen Activators (tPA) production were maintained by spike feeding fresh medium in fed-batch cultivation of human recombinant melanoma cells. It showed that tPA production was much seriously affected than cell growth according to initial glutamine concentrations. Above 3.4 (mmol/I) of glutamine concentration both cell growth and tPA production were not much affected by increasing initial glutamine concentration. Glutamine depleted situation was occurred at latter periods of batch and fed-batch cultivations below 5.4 (mmole/I) of initial glutamine concentration. It also showed that maximum glutamine consumption and ammonia evolution rates were closely related to initial glutamine concentrations. Maximum specific tPA production rate was estimated as $8.1\times19^{-6}$ ($\mu g$/cells/h) at 3.4(mmol/I) of glutamine concentration, which is higher than that from other batch and fed-batch processes.

  • PDF