• Title/Summary/Keyword: initial adhesion

Search Result 195, Processing Time 0.024 seconds

Role of eptC in Biofilm Formation by Campylobacter jejuni NCTC11168 on Polystyrene and Glass Surfaces

  • Lim, Eun Seob;Kim, Joo-Sung
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.9
    • /
    • pp.1609-1616
    • /
    • 2017
  • The complex roles of cell surface modification in the biofilm formation of Campylobacter jejuni, a major cause of worldwide foodborne diarrheal disease, are poorly understood. In a screen of mutants from random transposon mutagenesis, an insertional mutation in the eptC gene (cj0256) resulted in a significant decrease in C. jejuni NCTC11168 biofilm formation (<20%) on major food contact surfaces, such as polystyrene and borosilicate glass, when compared with wild-type cells (p < 0.05). In C. jejuni strain 81-176, the protein encoded by eptC modified cell surface structures, such as lipid A, the inner core of lipooligosaccharide, and the flagellar rod protein (FlgG), by attaching phosphoethanolamine. To assess the role of eptC in C. jejuni NCTC11168, adherence and motility tests were performed. In adhesion assays with glass surfaces, the eptC mutant exhibited a $0.77log\;CFU/cm^2$ decrease in adherence compared with wild-type cells during the initial 2 h of the assay (p < 0.05). These results support the hypothesis that the modification of cell surface structures by eptC affects the initial adherence in biofilm formation of C. jejuni NCTC11168. In motility tests, the eptC mutant demonstrated reduced motility when compared with wild-type cells, but wild-type cells with the transposon inserted in a gene irrelevant to biofilm formation (cj1111c) also exhibited decreased motility to a similar extent as the eptC mutant. This suggests that although eptC affects motility, it does not significantly affect biofilm formation. This study demonstrates that eptC is essential for initial adherence, and plays a significant role in the biofilm formation of C. jejuni NCTC11168.

The diameter and direction of jumping droplets from condensing water on lotus leaves

  • Park, Hyeon-U;Jo, Sam-Geun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.384.2-384.2
    • /
    • 2016
  • Recent publications reported the self-propelled jumping of coalescing dew droplets on superhydrophobic surfaces [1-2]. We further investigated the initial growth, coalescence, and removal by self-propelled ejection of nano and microscopic water droplets on the superhydrophobic surface of lotus leaves under condensing conditions. By using a high-speed digital camera mounted on an optical microscope, we have found: (1) sub-micrometer droplets form and grow on nanoscale waxy hairs; (2) growing droplets coalesce rapidly upon contact, but never jump off the surface unless the diameter of merged droplets exceeds ${\sim}15{\mu}m$; (3) the diameter and direction of jumping droplets are very narrowly distributed, centered at $20-30{\mu}m$ and ${\sim}20$ degrees from the surface normal, respectively. We present a rationale for these observations on the basis of: (a) the hierarchically rough surface structure on nano- and micro-scales; (b) its chemical composition; and (c) the balance among competing forces of cohesion (surface tension), adhesion and gravity.

  • PDF

Electrochemical Characteristics of Si/Mo Multilayer Anode for Lithium-Ion Batteries (리튬 이온 전지용 Si/Mo 다층박막 음극의 전기화학적 특성)

  • Park, Jong-Wan;Ascencio Jorge A.
    • Korean Journal of Materials Research
    • /
    • v.16 no.5
    • /
    • pp.297-301
    • /
    • 2006
  • Si/Mo multilayer anode consisting of active/inactive material was prepared using rf/dc magnetron sputtering. Molybdenum acts as a buffer against the volume change of the Silicon. Multilayer deposited on RT (reversible treatment) copper foil current collector to enhance adhesion between Silicon and copper foil. Deposited Silicon was identified as an amorphous. Amorphous has a relatively open structure than crystal structure, thus prevents the lattice expansion and has many diffusion paths of Li ion. When deposited time of Silicon and Molybdenum is 30 second and 2 second respectably, electrode has more capacity and good cycle stability. A 3000 nm thick multilayer was maintained 99% of the initial capacity (1624 $mAhg^{-1}$) after 100 cycles. As the increase of the multilayer thickness (4500 nm, 6000 nm), Si/Mo mutilayer anodes show aggravation cycle stability.

An Experimental Study on the Durability of SFRC Using Fly Ash (플라이애쉬를 이용한 강섬유보강 콘크리트의 내구성에 관한 실험적 연구)

  • 박승범;오광진;이택우;권혁준
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.339-344
    • /
    • 1997
  • During recent years the durability of concrete structures has attracted considerable interest in concrete practice, material research and long-term deformation. To preserve the brittleness of concrete as well as energy absorption and impact resistance, amount of fiber usage has greatly increased year to year in the field of public works. When fly ash, fine powder, mixed into concrete, it condensed the void of concrete structure. Expecially, there's a great effect for strength improvement of concrete by initial pozzolanic reactions. Pozzolan reaction, between cement particle and fly ash, can elaborate the micro structure of matrix. So it was able to improve the effect of fiber reinforced by increased adhesion between cement paste and steel fiber. And so, in this paper, we dealt SFRC for the purpose of efficiently using of industrial by-products and its economical manufacturing. Also we performed the test for durability such as chemical resistance, freeze-thaw resistance and accelerated carbonation of SFRC using fly ash.

  • PDF

Effects of Pretreatment on the Adhesive Bonding of Aluminium Plate (Al 판재의 Adhesion Bonding에 미치는 전처리 영향)

  • Han, Seong-Ho;Kim, Man;Chung, Do-Yeon;Rho, Byug-Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.25 no.2
    • /
    • pp.97-102
    • /
    • 1992
  • Transimission electron microscope(TEM)/ultramicrotomy were used to characterize the detailed surface morphology of 2024-T3 Al alloy surfaces prepared by various pretreatment process. It was found that, for good and superior initial adhesive strength and durability, chemically pretreated substrates appeared essential. The film morphology developed after CSA etching treatment, ass revealed by TEM, suggested the present of irregular cell pattern with finely separated whisker-like protrusion with was responsible for increase of bond strength.

  • PDF

High Dose $^{60}Co\;{\gamma}$-Ray Irradiation of W/GaN Schottky Diodes

  • Kim, Jihyun;Ren, F.;Schoenfeld, D.;Pearton, S.J.;Baca, A.G.;Briggs, R.D.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.4 no.2
    • /
    • pp.124-127
    • /
    • 2004
  • W/n-GaN Schottky diodes were irradiated with $^{60}Co\;{\gamma}-rays$ to doses up to 315Mrad. The barrier height obtained from current-voltage (I-V) measurements showed minimal change from its estimated initial value of ${\sim}0.4eV$ over this dose range, though both forward and reverse I-V characteristics show evidence of defect center introduction at doses as low as 150 Mrad. Post irradiation annealing at $500^{\circ}C$ increased the reverse leakage current, suggesting migration and complexing of defects. The W/GaN interface is stable to high dose of ${\gamma}-rays$, but Au/Ti overlayers employed for reducing contact sheet resistance suffer from adhesion problems at the highest doses.

Experimental Study of the Joint Movement Responsiveness Performance to the One-Component Silicon Sealants at Curing Phase (경화단계에서의 1성분형 실리콘 실란트의 거동대응성능에 관한 실험적 연구)

  • Son, Jong-Won;Ono, Tadashi
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.63-64
    • /
    • 2014
  • In this study, we has a purpose to estimate the joint movement responsiveness performance for the domestic products of one-component structural silicon sealants. For this purpose, we make a comparative study for the four domestic products focused on tensile properties after allowed the cyclic-movements for three days at initial step of curing phase. A joint movement range ±10% and the rate of compression and extension 3.2mm/h were assumed in those tests. As a result, the large space were induced inside the sealant by rupture, and then adhesion and cohesion failures were caused by stress concentration. The tensile properties were reduced by 15~60% in comparison with physical properties. In this case, the generating defect was caused and the service-life was decreased. Thus, further researches as relationship of test condition and products properties on this behavior would be studied.

  • PDF

The Effect of Corona Treated on Laminating Film and Its Analytical Study by SEM (라미네이팅 필름의 코로나 처리 효과와 주사 전자현미경을 이용한 해석)

  • Kim, Jong-Gyu;Kim, Yang-Pioung
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.26 no.2
    • /
    • pp.15-30
    • /
    • 2008
  • Studies were carried out the phenomenal observation on the effect of corona treated hotmelt laminating film in process of manufacture by 2 kinds of experiments. These are as follow: 1) In order to verify the treatment reducing value of dynes and dynes durability with the lapse of time, it was checked dynes of a pair of 4 bar discharge electrode with 9 one for 144 hr., and it show results that 9 bar discharge electrode has higher initial dynes as well as keep up 48 dynes durability long than 4 one. 2) Drawn an inference from 3 actions -Chemical-Physical-Mechanical, on laminating film in terms of SEM's observation that are the adhesive status in boundary of corona treated base film, extrusion coating hotmelt layer, and configuration of hotmelt surface after corona treated. In tandem system, EVA layers adhesion keep its stability without corona discharge treatment.

  • PDF

Effects of nasopharyngeal microbiota in respiratory infections and allergies

  • Kang, Hyun Mi;Kang, Jin Han
    • Clinical and Experimental Pediatrics
    • /
    • v.64 no.11
    • /
    • pp.543-551
    • /
    • 2021
  • The human microbiome, which consists of a collective cluster of commensal, symbiotic, and pathogenic microorganisms living in the human body, plays a key role in host health and immunity. The human nasal cavity harbors commensal bacteria that suppress the colonization of opportunistic pathogens. However, dysbiosis of the nasal microbial community is associated with many diseases, such as acute respiratory infections including otitis media, sinusitis and bronchitis and allergic respiratory diseases including asthma. The nasopharyngeal acquisition of pneumococcus, which exists as a pathobiont in the nasal cavity, is the initial step in virtually all pneumococcal diseases. Although the factors influencing nasal colonization and elimination are not fully understood, the adhesion of opportunistic pathogens to nasopharyngeal mucosa receptors and the eliciting of immune responses in the host are implicated in addition to bacterial microbiota properties and colonization resistance dynamics. Probiotics or synbiotic interventions may show promising and effective roles in the adjunctive treatment of dysbiosis; however, more studies are needed to characterize how these interventions can be applied in clinical practice in the future.

Characteristic of Ru Thin Film Deposited by ALD

  • Park, Jingyu;Jeon, Heeyoung;Kim, Hyunjung;Kim, Jinho;Jeon, Hyeongtag
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.78-78
    • /
    • 2013
  • Recently, many platinoid metals like platinum and ruthenium have been used as an electrode of microelectronic devices because of their low resistivity and high work-function. However the material cost of Ru is very expensive and it usually takes long initial nucleation time on SiO2 during chemical deposition. Therefore many researchers have focused on how to enhance the initial growth rate on SiO2 surface. There are two methods to deposit Ru film with atomic layer deposition (ALD); the one is thermal ALD using dilute oxygen gas as a reactant, and the other is plasma enhanced ALD (PEALD) using NH3 plasma as a reactant. Generally, the film roughness of Ru film deposited by PEALD is smoother than that deposited by thermal ALD. However, the plasma is not favorable in the application of high aspect ratio structure. In this study, we used a bis(ethylcyclopentadienyl)ruthenium [Ru(EtCp)2] as a metal organic precursor for both thermal and plasma enhanced ALDs. In order to reduce initial nucleation time, we use several methods such as Ar plasma pre-treatment for PEALD and usage of sacrificial RuO2 under layer for thermal ALD. In case of PEALD, some of surface hydroxyls were removed from SiO2 substrate during the Ar plasma treatment. And relatively high surface nitrogen concentration after first NH3 plasma exposure step in ALD process was observed with in-situ Auger electron spectroscopy (AES). This means that surface amine filled the hydroxyl removed sites by the NH3 plasma. Surface amine played a role as a reduction site but not a nucleation site. Therefore, the precursor reduction was enhanced but the adhesion property was degraded. In case of thermal ALD, a Ru film was deposited from Ru precursors on the surface of RuO2 and the RuO2 film was reduced from RuO2/SiO2 interface to Ru during the deposition. The reduction process was controlled by oxygen partial pressure in ambient. Under high oxygen partial pressure, RuO2 was deposited on RuO2/SiO2, and under medium oxygen partial pressure, RuO2 was partially reduced and oxygen concentration in RuO2 film was decreased. Under low oxygen partial pressure, finally RuO2 was disappeared and about 3% of oxygen was remained. Usually rough surface was observed with longer initial nucleation time. However, the Ru deposited with reduction of RuO2 exhibits smooth surface and was deposited quickly because the sacrificial RuO2 has no initial nucleation time on SiO2 and played a role as a buffer layer between Ru and SiO2.

  • PDF