• 제목/요약/키워드: inhibitory signal transduction

검색결과 65건 처리시간 0.021초

Effect of Calmodulin on Ginseng Saponin-Induced $Ca^{2+}$-Activated $Cl^{-}$ Channel Activation in Xenopus laevis Oocytes

  • Lee Jun-Ho;Jeong Sang-Min;Lee Byung-Hwan;Kim Jong-Hoon;Ko Sung-Ryong;Kim Seung-Hwan;Lee Sang-Mok;Nah Seung-Yeol
    • Archives of Pharmacal Research
    • /
    • 제28권4호
    • /
    • pp.413-420
    • /
    • 2005
  • We previously demonstrated the ability of ginseng saponins (active ingredients of Panax ginseng) to enhance $Ca^{2+}$-activated $Cl^{-}$ current. The mechanism for this ginseng saponin-induced enhancement was proposed to be the release of $Ca^{2+}$ from $IP_{3}-sensitive$ intracellular stores through the activation of PTX-insensitive $G\alpha_{q/11}$ proteins and PLC pathway. Recent studies have shown that calmodulin (CaM) regulates $IP_{3}$ receptor-mediated $Ca^{2+}$ release in both $Ca^{2+}-dependent$ and -independent manner. In the present study, we have investigated the effects of CaM on ginseng saponin-induced $Ca^{2+}$-activated $Cl^{-}$ current responses in Xenopus oocytes. Intraoocyte injection of CaM inhibited ginseng saponin-induced $Ca^{2+}$-activated $Cl^{-}$ current enhancement, whereas co-injection of calmidazolium, a CaM antagonist, with CaM blocked CaM action. The inhibitory effect of CaM on ginseng saponin-induced $Ca^{2+}$-activated $Cl^{-}$ current enhancement was dose- and time-dependent, with an $IC_{50} of 14.9\pm3.5 {\mu}M$. The inhibitory effect of CaM on saponin's activity was maximal after 6 h of intraoocyte injection of CaM, and after 48 h the activity of saponin recovered to control level. The half-recovery time was calculated to be $16.7\pm4.3 h$. Intraoocyte injection of CaM inhibited $Ca^{2+}$-induced $Ca^{2+}$-activated $Cl^{-}$ current enhancement and also attenuated $IP_{3}$-induced $Ca^{2+}$-activated $Cl^{-}$ current enhancement. $Ca^{2+}$/CaM kinase II inhibitor did not inhibit CaM-caused attenuation of ginseng saponin-induced $Ca^{2+}$-activated $Cl^{-}$ current enhancement. These results suggest that CaM regulates ginseng saponin effect on $Ca^{2+}$-activated $Cl^{-}$ current enhancement via $Ca^{2+}$-independent manner.

The Inhibitory Effects of Korean Red Ginseng Saponins on 5- HT3A Receptor Channel Activity Are Coupled to Anti-Nausea and Anti-Vomiting Action

  • Kim Jong-Hoon;Lee Byung-Hwan;Jeong Sang Min;Nah Seung-Yeol
    • Journal of Ginseng Research
    • /
    • 제29권1호
    • /
    • pp.37-43
    • /
    • 2005
  • We performed in vitro and in vivo studies to know whether the inhibitory effects of ginsenosides on $5-HT_{3A}$ receptor channel acctivity are coupled to anti-nausea and anti-vomiting action. In vitro study, we investigated the effect of compound K (CK) and M4, which are ginsenoside metabolites, on human $5-HT_{3A}$ receptor channel activity expressed in Xenopus oocytes using two-electrode voltage clamp technique. Treatment of CK or M4 themselves had no effect in both oocytes injected with $H_2O\;and\;5-HT_{3A}$ receptor cRNA. In oocytes injected with $5- HT_{3A}$ receptor cRNA, M4 treatment inhibited more potently 5-HT-induced inward peak current $(I_{5-HT})$ than CK with dose-dependent and reversible manner. The half-inhibitory concentrations $(IC_{50})$ of CK and M4 were $36.9\;\pm\;10.1\;and\;7.3\;\pm\;2.2\;{\mu}M$, respectively. The inhibition of $I_{5-HT}$ by M4 was non-competitive and voltage-independent. These results indicate that M4 might regulate $5-HT_{3A}$ receptors. In vivo experiments, injection of cisplatin (7.5 mg/kg, i.v.) induced both nausea and vomiting with 1 h latency. These episodes reached to peak after 2 h and persisted for 4 h. Pre-treatment of GTS (500 mg/kg, p.o.) significantly reduced cisplatin-induced nausea and vomiting by $51\;\pm\;8.4\;and\;48.8\;\pm\;6.4\%$ during 4 h compared to GIS­untreated group, respectively. These results show the possibility that in vitro inhibition of $5-HT_{3A}$ receptor channel activity by ginsenosides might be coupled to in vivo anti-emetic activity.

Effects of Ginsenoside Total Saponins on Experimental Irritable Bowel Syndrome in Rats

  • Kim, Jong-Hoon;Nah, Seung-Yeol
    • Journal of Ginseng Research
    • /
    • 제29권2호
    • /
    • pp.94-99
    • /
    • 2005
  • In the previous study, we reported that the in viかo inhibitory effect of ginsenosides, active ingredient of Panax ginseng, on $5-HT_{3A}$ receptor channel activity is coupled to in vivo anti-vomiting and anti-nausea effect. In the present study, we further investigated that the inhibitory effect of ginsenosides, active ingredient of Panax ginseng, on 5-HT3A receptor channel activity is also coupled to attenuation of irritable bowel syndrome (IBS), which is induced by colorectal distention (CRD) and $0.6\%$ acetic acid treatment. The CRD-induced visceral pains induced by CRD and acetic acid treatment are measured by frequency of contractions of the external oblique muscle in conscious rats. Treatment of GTS significantly inhibited CRD-induced visceral pain with dose-dependent manner. The $EC_{50}$ was $5.5{\pm}4.7$ mg/kg ($95\%$ confidence intervals: 1.2-15.7) and the antinociceptive effect of GTS on visceral pain was persistent for 4 h. We also compared the effects of protopanaxadiol (PD) ginsenosides and protopanaxatriol (PT) ginsenosides with saline on acetic acid-and CRD-induced visceral pain, and found that protopanaxatriol (PT) ginsenosides was much more potent than PD ginsenosides in attenuating CRD-induced visceral pain. These results indicate that U ginsenosides of Panax ginseng are components far attenuation of experimentally CRD-induced visceral pains.

Differential Effect of Bovine Serum Albumin on Ginsenoside Metabolite-Induced Inhibition of ${\alpha}3{\beta}4$ Nicotinic Acetylcholine Receptor Expressed in Xenopus Oocytes

  • Lee, Jun-Ho;Jeong, Sang-Min;Lee, Byung-Hwan;Kim, Dong-Hyun;Kim, Jong-Hoon;Kim, Jai-Il;Lee, Sang-Mok;Nah, Seung-Yeol
    • Archives of Pharmacal Research
    • /
    • 제26권10호
    • /
    • pp.868-873
    • /
    • 2003
  • Ginsenosides, major active ingredients of Panax ginseng, that exhibit various pharmacological and physiological actions are transformed into compound K (CK) or M4 by intestinal microorganisms. CK is a metabolite derived from protopanaxadiol (PD) ginsenosides, whereas M4 is a metabolite derived from protopanaxatriol (PT) ginsenosides. Recent reports shows that ginsenosides might playa role as pro-drugs for these metabolites. In present study, we investigated the effect of bovine serum albumin (BSA), which is one of major binding proteins on various neurotransmitters, hormones, and other pharmacological agents, on ginsenoside $Rg_{2-}$, CK-, or M4-induced regulation of $\alpha3\beta4$ nicotinic acetylcholine (ACh) receptor channel activity expressed in Xenopus oocytes. In the absence of BSA, treatment of ACh elicited inward peak current ($I_{Ach}$) in oocytes expressing $\alpha3\beta4$ nicotinic ACh receptor. Co-treatment of ginsenoside $Rg_2$, CK, or M4 with ACh inhibited IAch in oocytes expressing $\alpha3\beta4$ nicotinic ACh receptor with reversible and dose-dependent manner. In the presence of 1% BSA, treatment of ACh still elicited $I_{Ach}$ in oocytes expressing $\alpha3\beta4$ nicotinic ACh receptor and co-treatment of ginsenoside $Rg_2$ or M4 but not CK with ACh inhibited $I_{Ach}$ in oocytes expressing $\alpha3\beta4$ nicotinic ACh receptor with reversible and dose-dependent manner. These results show that BSA interferes the action of CK rather than M4 on the inhibitory effect of $I_{Ach}$ in oocytes expressing $\alpha3\beta4$ nicotinic ACh receptor and further suggest that BSA exhibits a differential interaction on ginsenoside metabolites.

The Signal Transduciton of Ginsenosides, Active Ingredients of Panax ginseng, in Xenopus oocyte: A Model System for Ginseng Study

  • Nah Seung-Yeol;Lee Sang-Mok
    • 고려인삼학회:학술대회논문집
    • /
    • 고려인삼학회 2002년도 학술대회지
    • /
    • pp.66-83
    • /
    • 2002
  • Recently, we have provided evidence that ginsenosides, the active components of Panax ginseng, utilize pertussis toxin (PTX)-insensitive $G{\alpha}_{q/11}-phospholipase\;C-{\beta}3(PLC-{\beta}3)$ signal transduction pathway for the enhancement of $Ca^{2+}-activated\;Cl^{-}$ current in the Xenopus oocyte (British J. Pharmacol. 132, 641-647, 2001; JBC 276, 48797-48802, 2001). Other investigators have shown that stimulation of receptors linked to $G{\alpha}-PLC$ pathway inhibits the activity of G proteincoupled inwardly rectifying $K^+$ (GIRK) channel. In the present study, we sought to determine whether ginsenosides influenced the activity of GIRK 1 and GIRK 4 (GIRK 1/4) channels expressed in the Xenopus oocyte, and if so, the underlying signal transduction mechanism. In oocyte injected with GIRK 1/4 channel cRNAs, bath-applied ginsenosides inhibited high potassium (HK) solution-elicited GIRK current $(EC_{50}:4.9{\pm}4.3\;{\mu}g/ml).$ Pretreatment of the oocyte with PTX reduced the HK solution-elicited GIRK current by $49\%,$ but it did not alter the inhibitory ginsenoside effect on GIRK current. Prior intraoocyte injection of cRNA(s) coding $G{\alpha}_q,\;G{\alpha}_{11}\;or\;G{\alpha}_q/G{\alpha}_{11},\;but\;not\;G{\alpha}_{i2}\;or\;G{\alpha}_{oA}$ attenuated the inhibitory ginsenoside effect. Injection of cRNAs coding $G{\beta}_{1{\gamma}2}$ also attenuated the ginsenoside effect. Similarly, injection of the cRNAs coding regulators of G protein signaling 1, 2 and 4 (RGS1, RGS2 and RGS4), which interact with $G{\alpha}_i\;and/or\;G{\alpha}_{q/11}$ and stimulates the hydrolysis of GTP to GDP in active GTP-bound $G{\alpha}$ subunit, resulted in a significant reduction of ginsenoside effect on GIRK current. Preincubation of GIRK channel-expressing oocyte in PLC inhibitor (U73122) or protein kinase C (PKC) inhibitor (staurosporine or chelerythrine) blocked the inhibitory ginsenoside effect on GIRK current. On the other hand, intraoocyte injection of BAPTA, a free $Ca^{2+}$ chelator, had no significant effect on the ginsenoside action. Taken together, these results suggest that ginsenosides inhibit the activity of GIRK 1/4 channel expressed in the Xenopus oocyte through a PTX-insensitive and $G{\alpha}_{q/11}$-,PLC-and PKC-mediated signal transduction pathway.

  • PDF

Development of Novel Small Chemical Inhibitors for Lck SH Domain with in vitro T-cell Inhibitory Activity

  • Park, See-Hyoung;Kang, Mi-Ae;Shim, Hyeong-Soo;Cho, Hyeong-Jin;Won, Jong-Hwa;Lee, Keun-Hyeung
    • Bulletin of the Korean Chemical Society
    • /
    • 제27권9호
    • /
    • pp.1353-1358
    • /
    • 2006
  • We investigated in vitro T-cell inhibitory activity and bioavailability of small chemical inhibitors for Lck SH2 domain, which had a different scaffold such as an amide bond, reduced amide bond, N-methyl amide bond, thioamide bond, and urethane bond. Each of these compounds, with its particular scaffold, showed a different logP value, stability against serum enzyme, stability in buffer solution, and in vitro T-cell inhibitory activity. Overall results indicated that the SH2 inhibitor containing urethane bond can be a new lead compound because of its superior bioavailability, potent in vitro T-cell inhibitory activity, and facile synthesis.

Proteomic Evaluation of Cellular Responses of Saccharomyces cerevisiae to Formic Acid Stress

  • Lee, Sung-Eun;Park, Byeoung-Soo;Yoon, Jeong-Jun
    • Mycobiology
    • /
    • 제38권4호
    • /
    • pp.302-309
    • /
    • 2010
  • Formic acid is a representative carboxylic acid that inhibits bacterial cell growth, and thus it is generally considered to constitute an obstacle to the reuse of renewable biomass. In this study, Saccharomyces cerevisiae was used to elucidate changes in protein levels in response to formic acid. Fifty-seven differentially expressed proteins in response to formic acid toxicity in S. cerevisiae were identified by 1D-PAGE and nano-liquid chromatography-tandem mass spectrometry (nano-LC-MS/MS) analyses. Among the 28 proteins increased in expression, four were involved in the MAP kinase signal transduction pathway and one in the oxidative stress-induced pathway. A dramatic increase was observed in the number of ion transporters related to maintenance of acid-base balance. Regarding the 29 proteins decreased in expression, they were found to participate in transcription during cell division. Heat shock protein 70, glutathione reductase, and cytochrome c oxidase were measured by LC-MS/MS analysis. Taken together, the inhibitory action of formic acid on S. cerevisiae cells might disrupt the acidbase balance across the cell membrane and generate oxidative stress, leading to repressed cell division and death. S. cerevisiae also induced expression of ion transporters, which may be required to maintain the acid-base balance when yeast cells are exposed to high concentrations of formic acid in growth medium.

말초혈액 단핵구에 대한 내독소 자극의 신호 전달에서 Protein Kinase C와 Protein Tyrosine Kinase의 역할 (The Role of Protein Kinase C and Protein Tyrosine Kinase in the Signal Transduction Pathway of Stimulus Induced by Endotoxin in Peripheral Blood Monocyte)

  • 김재열;박재석;이귀래;유철규;김영환;한성구;심영수
    • Tuberculosis and Respiratory Diseases
    • /
    • 제44권2호
    • /
    • pp.338-348
    • /
    • 1997
  • Background : Endotoxin, the component of outermembrane of gram negative organism, plays an important role in the initiation and amplification of inflammatory reaction by its effects on inflammatory cells. Until recently, there have been continuing efforts to delinate the mechanisms of the signal trasduction pathway of endotoxin stimuli on inflammatory cells. By uncovering the mechanisms of signal transduction pathway of endotoxin stimuli, we can expect to have tools to control the excessive inflammatory responses which sometimes may be fatal to the involved host. It was generally accepted that endotoxin exerts its inflammatory effects through inflammatory cytokines that are produced by endotoxin-stimulated inflammatory cells and there were some reports on the importance of protein kinase C and protein tyrosine kinase activation in the production of inflammatory cytokines by endotoxin So we evaluated the effect of pretreatment of protein kinase C inhibitors (H7, Staurosporin) and protein tyrosine kinase inhibitors(Herbimycin, Genistein) on the endotoxin-stimulated cytokines(IL-8 & TNF-$\alpha$) mRNA expression. Method : Peripheral blood monocytes were isolated from healthy volunteers by Ficoll-Hypaque density gradient method and purified by adhesion to 60mm Petri dishes. Endotoxin(LPS 100ng/ml) was added to each dishes except one control dish, and each endotoxin-stimulated dishes was preincubated with H7, Staurosporin(protein kinase C inhibitor), Herbimycin or Genistein(protein tyrosine kinase inhibitor) respectively except one dish. Four hours later the endotoxin stimulation, total RNA was extracted and Northern blot analysis for IL-8 mRNA and TNF-$\alpha$ mRNA was done. Result : Endotoxin stimulation increased the expression of IL-8 mRNA and TNF-$\alpha$ mRNA expression in human peripheral blood monocyte as expected and the stimulatory effect of endotoxin on TNF-$\alpha$ mRNA expression was inhibited by protein kinase C inhibitors(H7, Staurosporin) and protein tyrosine kinase inhibitors (Herbimycin, Genistein). The inhibitory effect of each drugs was increased with increasing concentration. The stimulatory effect of endotoxin on IL-8 mRNA was also inhibited by H7 and protein tyrosine kinase inhibitors (Herbimycin, Genistein) dose-dependently but not by Staurosporin. Conclusion : Protein kinase C and protein tyrosine kinase are involved in the endotoxin induced signal transduction pathway in human peripheral blood monocyte.

  • PDF

Role of ${\alpha}$-tocopherol in cellular signaling: ${\alpha}$-tocopherol inhibits stress-induced mitogen-activated protein kinase activation

  • Hyun, Tae-Kyung;Kumar, Kundan;Rao, Kudupudi Prabhakara;Sinha, Alok Krishna;Roitsch, Thomas
    • Plant Biotechnology Reports
    • /
    • 제5권1호
    • /
    • pp.19-25
    • /
    • 2011
  • Tocopherols belong to the plant-derived poly phenolic compounds known for antioxidant functions in plants and animals. Activation of mitogen-activated protein kinases (MAPK) is a common reaction of plant cells in defense-related signal transduction pathways. We report a novel non-antioxidant function of ${\alpha}$-tocopherol in higher plants linking the physiological role of tocopherol with stress signalling pathways. Pre-incubation of a low concentration of $50{\mu}M$ ${\alpha}$-tocopherol negatively interferes with MAPK activation in elicitor-treated tobacco BY2 suspension culture cells and wounded tobacco leaves, whereas pre-incubated BY2 cells with ${\alpha}$-tocopherol phosphate did not show the inhibitory effect on stimuli-induced MAPK activation. The decreased MAPK activity was neither due to a direct inhibitory effect of ${\alpha}$-tocopherol nor due to the induction of an inhibitory or inactivating activity directly affecting MAPK activity. The data support that the target of ${\alpha}$-tocopherol negatively regulates an upstream component of the signaling pathways that leads to stress dependent MAPK activation.