• 제목/요약/키워드: inhibitory mechanism

검색결과 1,035건 처리시간 0.021초

The effect of light on follicular development in laying hens

  • Cheng, Shi Bin;Li, Xian Qiang;Wang, Jia Xiang;Wu, Yan;Li, Peng;Pi, Jin Song
    • Animal Bioscience
    • /
    • 제34권11호
    • /
    • pp.1766-1775
    • /
    • 2021
  • Objective: The oxidative stress status and changes of chicken ovary tissue after shading were studied, to determine the mechanism of the effect of shading on follicular development. Methods: Twenty healthy laying hens (40 weeks old) with uniform body weight and the same laying rate were randomly divided into two groups (the shading group and normal light group). In the shading group, the cage was covered to reduce the light intensity inside the cage to 0 without affecting ventilation or food intake. The normal lighting group received no additional treatment. After 7 days of shading, oxidative stress related indicators and gene expression were detected. Results: Analysis of paraffin and ultrathin sections showed that apoptosis of ovarian granulosa cells (GCs) increased significantly after light shading. Enzyme linked immunosorbent assay results revealed that the levels of total antioxidant capacity, malondialdehyde, superoxide dismutase (SOD), glutathione, catalase (CAT), and other substances in the sera, livers, ovaries, and follicular GCs of laying hens increased significantly after shading for 7 days; and reactive oxygen species (ROS) levels in the livers of laying hens also increased significantly. ROS in the serum, ovarian and GCs also increased. After shading for 7 days, the levels of 8-hydroxy-2 deoxyguanosine in the sera and ovarian tissues of laying hens increased significantly. Cell counting kit-8 detection showed that the proliferation activity of GCs in layer follicles decreased after shading for 7 days; the expression level of the anti-apoptotic gene B-cell lymphoma-2 in ovarian tissue and follicular GCs was significantly reduced, and the expression levels of pro-apoptotic caspase 3 (casp3), and SOD, glutathione peroxidase 2 (GPX2), and CAT were all significantly increased. Conclusion: Oxidative stress induced by shading light has a serious inhibitory effect on follicular development during reproduction in laying hens.

The Inhibitory Mechanism on Acetylcholine-Induced Contraction of Bladder Smooth Muscle in the Streptozotocin-Induced Diabetic Rat

  • Han, Jong Soo;Kim, Su Jin;Nam, Yoonjin;Lee, Hak Yeong;Kim, Geon Min;Kim, Dong Min;Sohn, Uy Dong
    • Biomolecules & Therapeutics
    • /
    • 제27권1호
    • /
    • pp.101-106
    • /
    • 2019
  • Most diabetic patients experience diabetic mellitus (DM) urinary bladder dysfunction. A number of studies evaluate bladder smooth muscle contraction in DM. In this study, we evaluated the change of bladder smooth muscle contraction between normal rats and DM rats. Furthermore, we used pharmacological inhibitors to determine the differences in the signaling pathways between normal and DM rats. Rats in the DM group received an intraperitoneal injection of 65 mg/kg streptozotocin and measured blood glucose level after 14 days to confirm DM. Bladder smooth muscle contraction was induced using acetylcholine (ACh, $10^{-4}M$). The materials such as, atropine (a muscarinic receptor antagonist), U73122 (a phospholipase C inhibitor), DPCPX (an adenosine $A_1$ receptor antagonist), udenafil (a PDE5 inhibitor), prazosin (an ${\alpha}_1$-receptor antagonist), papaverine (a smooth muscle relaxant), verapamil (a calcium channel blocker), and chelerythrine (a protein kinase C inhibitor) were pre-treated in bladder smooth muscle. We found that the DM rats had lower bladder smooth muscle contractility than normal rats. When prazosin, udenafil, verapamil, and U73122 were pre-treated, there were significant differences between normal and DM rats. Taken together, it was concluded that the change of intracellular $Ca^{2+}$ release mediated by PLC/IP3 and PDE5 activity were responsible for decreased bladder smooth muscle contractility in DM rats.

레몬그라스 에탄올 추출물의 3T3-L1 지방세포 분화 억제효과 (Inhibitory Effect of Cymbopogon Citratus Ethanol Extracts on Adipogenesis in 3T3-L1 Preadipocytes)

  • 조용석;주성민;황금희;김민숙;김광상;전병훈
    • 동의생리병리학회지
    • /
    • 제33권1호
    • /
    • pp.17-24
    • /
    • 2019
  • Cymbopogon citratus, commonly know as lemongrass, prossesses strong antioxidant, anti-tumor and anti-inflammatory properties. Howerver, its anti-obesity activity remains to be elucidated. This study investigated the effect of ethanol extract of Cymbopogon citratus on adipogenesis, and its underlying mechanism, in 3T3-L1 preadipocytes. The results demonstrated that ethanol extracts of Cymbopogon citratus effectively suppressed intercellular lipid accumulation at non-toxic concentrations, and was associated with the down-regulation of adipocyte-specific transcription factors, including $C/EBP{\alpha}$ and $PPAR{\gamma}$, and phosphorylation of $AMPK{\alpha}$. Furthermore, ethanol extracts of Cymbopogon citratus increased p21 and p21 expression, while the expression of CDK2, cyclin A and cyclin B1 was reduced. As a result, ethanol extracts of Cymbopogon citratus seems to induce G0/G1 cell cycle arrest of 3T3-L1 cells. On the other hand, ERK and Akt signaling pathways were not involved in anti-adipogenesis by ethanol extracts of Cymbopogon citratus. Taken together, theses results suggest that ethanol extracts of Cymbopogon citratus inhibits adipocyte differentiation in 3T3-L1 cells and can be used as a safe and efficient natural substance to manage anti-obesity.

Egg phospholipids exert an inhibitory effect on intestinal cholesterol absorption in mice

  • Lee, Yoojin;Han, Catherine Y.;Bae, Minkyung;Park, Young-Ki;Lee, Ji-Young
    • Nutrition Research and Practice
    • /
    • 제13권4호
    • /
    • pp.295-301
    • /
    • 2019
  • BACKGROUND/OBJECTIVES: Consumption of cholesterol-rich foods, such as eggs, has a minimal effect on circulating cholesterol levels in healthy humans. To gain insight, we investigated whether phospholipids rich in eggs (EPL) interfere with intestinal cholesterol absorption in vivo. MATERIALS/METHODS: To investigate the acute effect of EPL on intestinal cholesterol absorption, male C57BL/6J mice were orally administered with 6, 11, or 19 mg of EPL for three days. We also tested the effect of chronic EPL consumption on cholesterol metabolism in the small intestine and the liver in mice with diet-induced hypercholesterolemia. Male C57BL/6J mice were fed a high fat/high cholesterol (HF/HC; 35% fat, 0.25% cholesterol, w/w) diet for 4 weeks to induce hypercholesterolemia, and subsequently the mice were either fed 0, 0.4 or 0.8% (w/w) of EPL for 6 weeks. RESULTS: Intestinal cholesterol absorption was significantly decreased by the highest dose of acute EPL administration compared to control. Chronic EPL supplementation did not significantly alter intestinal cholesterol absorption nor plasma levels of total cholesterol and low-density lipoprotein cholesterol. In the small intestine and the liver, EPL supplementation minimally altered the expression of genes which regulate cellular cholesterol levels. CONCLUSION: Although chronic EPL consumption was not able to counteract hypercholesterolemia in HF/HC-fed mice, acute EPL administration decreased intestinal cholesterol absorption. This study provides in vivo evidence that acute administration of PLs in eggs prevent cholesterol absorption in the intestine, suggesting a mechanism for a minimal effect of egg consumption on circulating cholesterol levels.

Inhibitory effects of thromboxane A2 generation by ginsenoside Ro due to attenuation of cytosolic phospholipase A2 phosphorylation and arachidonic acid release

  • Shin, Jung-Hae;Kwon, Hyuk-Woo;Rhee, Man Hee;Park, Hwa-Jin
    • Journal of Ginseng Research
    • /
    • 제43권2호
    • /
    • pp.236-241
    • /
    • 2019
  • Background: Thromboxane A2 ($TXA_2$) induces platelet aggregation and promotes thrombus formation. Although ginsenoside Ro (G-Ro) from Panax ginseng is known to exhibit a $Ca^{2+}-antagonistic$ antiplatelet effect, whether it inhibits $Ca^{2+}-dependent$ cytosolic phospholipase $A_2$ ($cPLA_{2{\alpha}}$) activity to prevent the release of arachidonic acid (AA), a $TXA_2$ precursor, is unknown. In this study, we attempted to identify the mechanism underlying G-Ro-mediated $TXA_2$ inhibition. Methods: We investigated whether G-Ro attenuates $TXA_2$ production and its associated molecules, such as cyclooxygenase-1 (COX-1), $TXA_2$ synthase (TXAS), $cPLA_{2{\alpha}}$, mitogen-activated protein kinases, and AA. To assay COX-1 and TXAS, we used microsomal fraction of platelets. Results: G-Ro reduced $TXA_2$ production by inhibiting AA release. It acted by decreasing the phosphorylation of $cPLA_{2{\alpha}}$, p38-mitogen-activated protein kinase, and c-Jun N-terminal kinase1, rather than by inhibiting COX-1 and TXAS in thrombin-activated human platelets. Conclusion: G-Ro inhibits AA release to attenuate $TXA_2$ production, which may counteract $TXA_2-associated$ thrombosis.

Effects of High Concentrations of Naftopidil on Dorsal Root-Evoked Excitatory Synaptic Transmissions in Substantia Gelatinosa Neurons In Vitro

  • Uta, Daisuke;Hattori, Tsuyoshi;Yoshimura, Megumu
    • International Neurourology Journal
    • /
    • 제22권4호
    • /
    • pp.252-259
    • /
    • 2018
  • Purpose: Naftopidil ((${\pm}$)-1-[4-(2-methoxyphenyl) piperazinyl]-3-(1-naphthyloxy) propan-2-ol) is prescribed in several Asian countries for lower urinary tract symptoms suggestive of benign prostatic hyperplasia. Previous animal experiments showed that intrathecal injection of naftopidil abolished rhythmic bladder contraction in vivo. Naftopidil facilitated spontaneous inhibitory postsynaptic currents in substantia gelatinosa (SG) neurons in spinal cord slices. These results suggest that naftopidil may suppress the micturition reflex at the spinal cord level. However, the effect of naftopidil on evoked excitatory postsynaptic currents (EPSCs) in SG neurons remains to be elucidated. Methods: Male Sprague-Dawley rats at 6 to 8 weeks old were used. Whole-cell patch-clamp recordings were made using SG neurons in spinal cord slices isolated from adult rats. Evoked EPSCs were analyzed in $A{\delta}$ or C fibers. Naftopidil or prazosin, an ${\alpha}1$-adrenoceptor blocker, was perfused at $100{\mu}M$ or $10{\mu}M$, respectively. Results: Bath-applied $100{\mu}M$ naftopidil significantly decreased the peak amplitudes of $A{\delta}$ and C fiber-evoked EPSCs to $72.0%{\pm}7.1%$ (n=15) and $70.0%{\pm}5.5%$ (n=20), respectively, in a reversible and reproducible manner. Bath application of $100{\mu}M$ prazosin did not inhibit $A{\delta}$ or C fiber-evoked EPSCs. Conclusions: The present study suggests that a high concentration of naftopidil reduces the amplitude of evoked EPSCs via a mechanism that apparently does not involve ${\alpha}1$-adrenoceptors. Inhibition of evoked EPSCs may also contribute to suppression of the micturition reflex, together with nociceptive stimulation.

The Antioxidative Effect of Eclipta prostrata L. Extract on Cultured NIH3T3 Fibroblasts Injured by Manganese-Induced Cytotoxicity

  • Lee, Sang-Hee;Jung, In-Ju;Jang, Hyesook
    • 대한의생명과학회지
    • /
    • 제24권4호
    • /
    • pp.357-364
    • /
    • 2018
  • Manganese (Mn) is used as main materials in various chemical processes of industry, but it suggested that Mn brings about its toxicant by fume or dust through respiratory system and skin barrier. Mn toxicant induces the loss of mental health and life quality by cerebrovascular and skin diseases. Nevertheless, it lefts much unknown on the mechanism and the effectively therapeutic methods about Mn toxicant. Therefore, this study was evaluated the cytotoxicity induced by manganese dioxide ($MnO_2$) in cultured NIH3T3 fibroblasts, and also, the correlation between $MnO_2$-induced cytotoxicity and oxidative stress was examined. While, the effect of Eclipta prostrata L. (EP) extract belong to Compositae was assessed against $MnO_2$-induced cytotoxicity in the view of antioxidative effect for searching the natural resources mitigating or preventing the $MnO_2$-induced cytotoxicity. In this study, $MnO_2$-induced cytotoxicity was revealed as mid-toxic by Borenfreud and Puerner's toxic criteria, and catalase (CAT), an antioxidant prevented $MnO_2$-induced cytotoxicity by the remarkable increase of cell viability in these cultures. While, in the protective effect of EP extract on $MnO_2$-induced cytotoxicity, EP extract effectively prevented the cytotoxicity induced by $MnO_2$ via antioxidative effects such as xanthine oxidase (XO) inhibitory ability and DPPH-radical scavenging ability. From the above results, EP extract showed the effective prevention against $MnO_2$-induced cytotoxicity correlated with oxidative stress by antioxidative effects. Conclusively, this study may be useful to research or development the alternatively therapeutic agent from natural resources like EP extract for the treatment of diseases resulted in oxidative stress.

Protective effects of Cirsium japonicum var. maackii against amyloid beta-induced neurotoxicity in C6 glial cells

  • Kim, Ji Hyun;Kim, Min Jeong;Choi, Ji Myung;Lee, Sanghyun;Cho, Eun Ju
    • 농업과학연구
    • /
    • 제46권2호
    • /
    • pp.369-379
    • /
    • 2019
  • Alzheimer's disease (AD) is the most common neurodegenerative disease associated with age, and amyloid beta ($A{\beta}$) is known to cause Alzheimer's disease. In the present study, we investigated the protective effects of Cirsium japonicum var. maackii extract and its fractions against $A{\beta}$-induced neurotoxicity in C6 glial cells. The cells treated with $A{\beta}_{25-35}$ showed a decrease in cell viability and an increase in reactive oxygen species (ROS) production compared with the non-treated cells. However, the cells treated with the C. japonicum var. maackii extract and its fractions increased the cell viability and inhibited the $A{\beta}$-induced ROS production. These results demonstrate the neuroprotective effects of C. japonicum var. maackii against $A{\beta}$. To further examine the protective mechanism, we measured inflammation and apoptosis related protein expressions. The cells treated with extract and fractions from C. japonicum var. maackii down-regulated inflammatory related proteins such as cyclooxygenase-2, interleukin $(IL)-1{\beta}$, and IL-6, and attenuated apoptosis related proteins including B-cell lymphoma-2 (Bcl-2) associated X protein/Bcl-2 ratio. In particular, the ethanol and ethylacetate fraction exhibited higher inhibitory effect against ROS production and apoptosis-related protein expressions among the extract and the other fractions. Therefore, this study demonstrated the protective effects of C. japonicum var. maackii extract and its fractions against $A{\beta}$-induced neurotoxicity in C6 glial cells through the regulation of oxidative stress, inflammation, and apoptosis, suggesting that it might have potential as a therapeutic for AD.

Formosanin C attenuates lipopolysaccharide-induced inflammation through nuclear factor-κB inhibition in macrophages

  • Yin, Limin;Shi, Chaohong;Zhang, Zhongchen;Wang, Wensheng;Li, Ming
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제25권5호
    • /
    • pp.395-401
    • /
    • 2021
  • Extended inflammation and cytokine production pathogenically contribute to a number of inflammatory disorders. Formosanin C (FC) is the major diosgenin saponin found in herb Paris formosana Hayata (Liliaceae), which has been shown to exert anti-cancer and immunomodulatory functions. In this study, we aimed to investigate anti-inflammatory activity of FC and the underlying molecular mechanism. RAW264.7 macrophages were stimulated with lipopolysaccharide (LPS) or pretreated with FC prior to being stimulated with LPS. Thereafter, the macrophages were subjected to analysis of the expression levels of pro-inflammatory mediators, including nitric oxide (NO), prostaglandin E2 (PGE), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and IL-6, as well as two relevant enzymes, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2). The analysis revealed that FC administration blunted LPS-induced production of NO and PGE in a dose-dependent manner, while the expression of iNOS and COX-2 at both mRNA and protein levels was inhibited in LPS-stimulated macrophages pre-treated with FC. Moreover, LPS stimulation upregulated mRNA expression and medium release of TNF-α, IL-1β, and IL-6, whereas this effect was blocked upon FC pre-administration. Mechanistic studies showed that inhibitory effects of FC on LPS-induced inflammation were associated with a downregulation of IκB kinase, IκB, and p65/NF-κB pathway. Taken together, these data suggest that FC possesses an inflammation-suppressing activity, thus being a potential agent for the treatment of inflammation-associated disorders.

Purification of ginseng rare sapogenins 25-OH-PPT and its hypoglycemic, antiinflammatory and lipid-lowering mechanisms

  • Xu, Jing;Liu, Hairong;Su, Guangyue;Ding, Meng;Wang, Wei;Lu, Jincai;Bi, Xiuli;Zhao, Yuqing
    • Journal of Ginseng Research
    • /
    • 제45권1호
    • /
    • pp.86-97
    • /
    • 2021
  • Background: Panax ginseng Meyer has been used as a nourishing edible herb in East Asia for thousands of years. 25-OH-PPT was first discovered as a natural rare triterpenoid saponin in ginseng stems and leaves by our group. Research found that it showed strong inhibitory effects on α-glucosidase and protein tyrosine phosphatase 1B, and protected cardiocytes (H9c2) through PI3K/Akt pathway. Methods: In the research, in order to optimize the 25-OH-PPT enrichment process, optimal macroporous resins and optimal purification conditions were studied. Meanwhile, the hypoglycemic effect and mechanism of 25-OH-PPT were evaluated by using STZ to establish insulin-dependent diabetic mice and the spontaneous type 2 diabetes DB/DB mice. Results and Conclusion: Research found that 25-OH-PPT can reduce blood glucose and enhance glucose tolerance in STZ model mice. It increases insulin sensitivity by upregulating GLUT4 and AMPK in skeletal muscle, and activating insulin signaling pathways. In DB/DB mice, 25-OH-PPT achieves hypoglycemic effects mainly by activating the insulin signaling pathway. Meanwhile, through the influence of liver inflammatory factors and lipids in serum, it can be seen that 25-OH-PPT has obvious anti-inflammatory and lipid-lowering effects. These results provide new insights into the study of ginseng as a functional food.