The effect of light on follicular development in laying hens |
Cheng, Shi Bin
(College of Animal Science, Yangtze University)
Li, Xian Qiang (College of Animal Science, Yangtze University) Wang, Jia Xiang (College of Animal Science, Yangtze University) Wu, Yan (Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Science) Li, Peng (College of Animal Science, Yangtze University) Pi, Jin Song (Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Science) |
1 | Campderrich I, Nazar FN, Wichman A, Marin RH, Estevez I, Keeling LJ. Environmental complexity: a buffer against stress in the domestic chick. Plos One 2019;14:e210270. https://doi.org/10.1371/journal.pone.0210270 DOI |
2 | Zhang X, Yang W, Liang W, Wang Y, Zhang S. Intensity dependent disruptive effects of light at night on activation of the HPG axis of tree sparrows (Passer montanus). Environ Pollut 2019;249:904-9. https://doi.org/10.1016/j.envpol.2019.03.008 DOI |
3 | Renema RA, Robinson FE, Oosterhoff HH, Feddes JJR, Wilson JL. Early age thermal conditioning and a dual feeding program for male broilers challenged by heat stress. Poult Sci 2001;80:47-56. https://doi.org/10.1093/ps/80.1.47 DOI |
4 | Maddineni S, Ocon-Grove OM, Krzysik-Walker SM, Hendricks GR, Proudman JA, Ramachandran R. Gonadotrophininhibitory hormone receptor expression in the chicken pituitary gland: potential influence of sexual maturation and ovarian steroids. J Neuroendocrinol 2008;20:1078-88. https://doi.org/10.1111/j.1365-2826.2008.01765.x DOI |
5 | Han S, Wang Y, Liu L, et al. Influence of three lighting regimes during ten weeks growth phase on laying performance, plasma levels- and tissue specific gene expression- of reproductive hormones in Pengxian yellow pullets. Plos One 2017;12:e177358. https://doi.org/10.1371/journal.pone.0177358 DOI |
6 | Bellastella A, De Bellis A, Bellastella G, Esposito K. Opposite influence of light and blindness on pituitary-gonadal function. Front Endocrinol 2014;4:205. https://doi.org/10.3389/fendo.2013.00205 DOI |
7 | Farias JG, Herrera EA, Carrasco-Pozo C, et al. Pharmacological models and approaches for pathophysiological conditions associated with hypoxia and oxidative stress. Pharmacol Ther 2016;158:1-23. https://doi.org/10.1016/j.pharmthera.2015.11.006 DOI |
8 | Bromfield JJ, Iacovides SM. Evaluating lipopolysaccharideinduced oxidative stress in bovine granulosa cells. J Assist Reprod Genet 2017;34:1619-26. https://doi.org/10.1007/s10815-017-1031-2 DOI |
9 | Yang H, Xie Y, Yang D, Ren D. Oxidative stress-induced apoptosis in granulosa cells involves JNK, p53 and Puma. Oncotarget 2017;8:25310-22. https://doi.org/10.18632/oncotarget.15813 DOI |
10 | Du X, Li Q, Cao Q, Wang S, Liu H, Li Q. Integrated analysis of miRNA-mRNA interaction network in porcine granulosa cells undergoing oxidative stress. Oxid Med Cell Longev 2019;2019:1041583. https://doi.org/10.1155/2019/1041583 DOI |
11 | Wei JH, Yuan XY, Zhang JM, Wei JQ. Caspase activity and oxidative stress of granulosa cells are associated with the viability and developmental potential of vitrified immature oocytes. Eur J Obstet Gynecol Reprod Biol 2016;198:22-6. https://doi.org/10.1016/j.ejogrb.2015.12.010 DOI |
12 | Kang B, Wang X, Xu Q, Wu Y, Si X, Jiang D. Effect of 3-nitropropionic acid inducing oxidative stress and apoptosis of granulosa cells in geese. Biosci Rep 2018;38: BSR20180274. https://doi.org/10.1042/BSR20180274 DOI |
13 | Wang H, Zhao W, Liu J, Tan P, Zhang C, Zhou B. Fluoride-induced oxidative stress and apoptosis are involved in the reducing of oocytes development potential in mice. Chemosphere 2017;186:911-8. https://doi.org/10.1016/j.chemosphere.2017.08.068 DOI |
14 | Cui Y, Wang J, Hai-Jun Z, Feng J, Wu S, Qi G. Effect of photo-period on ovarian morphology, reproductive hormone secretion, and hormone receptor mRNA expression in layer ducks during the pullet phase. Poult Sci 2019;98:2439-47. https://doi.org/10.3382/ps/pey601 DOI |
15 | Li B, Weng Q, Liu Z, et al. Selection of antioxidants against ovarian oxidative stress in mouse model. J Biochem Mol Toxicol 2017;31:e21997. https://doi.org/10.1002/jbt.21997 DOI |
16 | Siddique S, Sadeu JC, Foster WG, Feng YL, Zhu J. In vitro exposure to cigarette smoke induces oxidative stress in follicular cells of F1 hybrid mice. J Appl Toxicol 2014;34:224-6. https://doi.org/10.1002/jat.2884 DOI |
17 | Zhu HX, Liu XQ, Hu MD, et al. Endocrine and molecular regulation mechanisms of the reproductive system of Hungarian White geese investigated under two artificial photo-periodic programs. Theriogenology 2019;123:167-76. https://doi.org/10.1016/j.theriogenology.2018.10.001 DOI |
18 | Zhang JQ, Shen M, Zhu CC, et al. 3-Nitropropionic acid induces ovarian oxidative stress and impairs follicle in mouse. Plos One 2014;9:e86589. https://doi.org/10.1371/journal.pone.0086589 DOI |
19 | Wang W, Luo S, Ma J, Shen W, Yin S. Cytotoxicity and DNA damage caused from diazinon exposure by inhibiting the PI3K-AKT Pathway in porcine ovarian granulosa cells. J Agric Food Chem 2019;67:19-31. https://doi.org/10.1021/acs.jafc.8b05194 DOI |
20 | Saeed-Zidane M, Linden L, Salilew-Wondim D, et al. Cellular and exosome mediated molecular defense mechanism in bovine granulosa cells exposed to oxidative stress. Plos One 2017;12:e0187569. https://doi.org/10.1371/journal.pone.0187569 DOI |
21 | Li Y, Cheng S, Li L, Zhao Y, Shen W, Sun X. Light-exposure at night impairs mouse ovary development via cell apoptosis and DNA damage. Biosci Rep 2019;39: BSR20181464. https://doi.org/10.1042/BSR20181464 DOI |
22 | Lai Q, Xiang W, Li Q, et al. Oxidative stress in granulosa cells contributes to poor oocyte quality and IVF-ET outcomes in women with polycystic ovary syndrome. Front Med 2018;12: 518-24. https://doi.org/10.1007/s11684-017-0575-y DOI |
23 | Shen M, Lin F, Zhang J, Tang Y, Chen W, Liu H. Involvement of the up-regulated FoxO1 expression in follicular granulosa cell apoptosis induced by oxidative stress. J Biol Chem 2012;287:25727-40. https://doi.org/10.1074/jbc.M112.349902 DOI |
24 | Liu L, Li D, Gilbert ER, et al. Effect of monochromatic light on expression of estrogen receptor (ER) and progesterone receptor (PR) in ovarian follicles of chicken. Plos One 2015;10:e0144102. https://doi.org/10.1371/journal.pone.0144102 DOI |
25 | Jia Z, Zhang J, Zhou D, Xu D, Feng X. Deltamethrin exposure induces oxidative stress and affects meiotic maturation in mouse oocyte. Chemosphere 2019;223:704-13. https://doi.org/10.1016/j.chemosphere.2019.02.092 DOI |
26 | Xu L, Sun H, Zhang M, et al. MicroRNA-145 protects follicular granulosa cells against oxidative stress-induced apoptosis by targeting Kruppel-like factor 4. Mol Cell Endocrinol 2017;452:138-47. https://doi.org/10.1016/j.mce.2017.05.030 DOI |
27 | Zhao WP, Wang HW, Liu J, Tan PP, Lin L, Zhou BH. JNK/STAT signalling pathway is involved in fluoride-induced follicular developmental dysplasia in female mice. Chemosphere 2018;209:88-95. https://doi.org/10.1016/j.chemosphere.2018.06.086 DOI |
28 | Surbhi, Kumar V. Avian photoreceptors and their role in the regulation of daily and seasonal physiology. Gen Comp Endocrinol 2015;220:13-22. https://doi.org/10.1016/j.ygcen.2014.06.001 DOI |
29 | Dunn IC, Lewis PD, Wilson PW, Sharp PJ. Acceleration of maturation of FSH and LH responses to photostimulation in prepubertal domestic hens by oestrogen. Reproductton 2003;126:217-25. https://doi.org/10.1530/rep.0.1260217 DOI |