• Title/Summary/Keyword: inhibitory compounds

Search Result 1,642, Processing Time 0.036 seconds

FPTase Inhibition Effect of Protostanes from Alismatis Rhizoma and Derivatives from Alisol B 23-acetate (택사 (Alismatis Rhizoma)에서 분리한 Protostane계 화합물과 그 유도체의 FPTase 억제활성)

  • Lee, Sang-Myung;Kwon, Byoung-Mog;Min, Byung-Sun
    • Korean Journal of Pharmacognosy
    • /
    • v.42 no.3
    • /
    • pp.218-222
    • /
    • 2011
  • The purpose of this research is to study of inhibitory activity of protostane type triterpens against farnesyl-protein transferase (FPTase). The ingredients of Alismatis Rhizoma, alisol B 23-acetate, C 23-acetate, alisols B and A 24-acetate, and thirteen synthetic analogues from alisol B 23-acetate exhibited inhibition activity against FPTase by scintillation proximity assay method. As a result, alisol C 23-acetate, one of the constituents of Alismatis Rhizoma, the synthetic analogues carboxylated and hydroxylated on branch chain of protostane exhibited a significant inhibitory activity. However, the compounds significantly lowered the inhibitory activity, when there is no 3 position keto on protostane skeletone.

Isolation of inhibitory compounds from the Magnoliae Flos on melanin biosynthesis in cultured B-16 mouse melanoma cell lines.

  • Xu, Guang-Hua;Kim, Jeong-Ah;Park, Sung-Hee;Chang, Hyun-Wook;Chung, See-Ryun;Lee, Seung-Ho
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.260.1-260.1
    • /
    • 2003
  • Magnoliae Flos(‘shin-j’). the flower buds of Magnolia kobus, is acrid to taste with a ‘warm’ property. It is a ‘wind-cold’ discutient and nasal decongestant and is principally used in the treatment of nasal congestion with headache, sinusitis and allergic rhinitis. By screening inhibitory activities on the melanin polymer biosysthesis in B-16 mouse melanoma cell lines, methylene chloride extract of Magnoliae Flos was found to have inhibitory effect on melanin polymer biosynthesis. (omitted)

  • PDF

Microtubule Inhibitory Effects of Various SJ Compounds on Tissue Culture Cells

  • Lee Jong Han;Kang Dong Wook;Kwon Ho Suk;Lee Sun Hwan;Park Si Kyung;Chung Sun Gan;Chon Eui Hwan;Paik Soon Young;Lee Joo Hun
    • Archives of Pharmacal Research
    • /
    • v.27 no.4
    • /
    • pp.436-441
    • /
    • 2004
  • SJ compounds (SJ8002 and related compounds) are a group of novel anticancer agents (Cho, Chung, Lee, Kwon, Kang, Joo, and Oh. PCT/KR02/00392). To explore the anticancer mechanism of these compounds, we examined the effect of SJ8002 on microtubules of six human cell lines. At a high concentration ($2\;{\mu}g/mL$), SJ8002 effectively disrupted microtubules of the six cell lines within 1 h. At lower concentrations ($0.05\~1.0\;{\mu}g/mL$), the antimicrotubule activity of SJ8002 varied defending on cell lines. The inhibition of in vitro polymerization of pure tubulin by SJ8002 suggested that SJ8002 acts on free tubulin, inhibits the polymerization of tubulin dimer into microtubules, and hence induces the depolymerization of microtubules.

Bioelectrochemical Detoxification of Phenolic Compounds during Enzymatic Pre-Treatment of Rice Straw

  • Kondaveeti, Sanath;Pagolu, Raviteja;Patel, Sanjay K.S.;Kumar, Ashok;Bisht, Aarti;Das, Devashish;Kalia, Vipin Chandra;Kim, In-Won;Lee, Jung-Kul
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.11
    • /
    • pp.1760-1768
    • /
    • 2019
  • The use of lignocellulosic biomass such as rice straw can help subsidize the cost of producing value-added chemicals. However, inhibitory compounds, such as phenolics, produced during the pre-treatment of biomass, hamper the saccharification process. Laccase and electrochemical stimuli are both well known to reduce phenolic compounds. Therefore, in this study, we implemented a bioelectrochemical detoxification system (BEDS), a consolidated electrochemical and enzymatic process involving laccase, to enhance the detoxification of phenolics, and thus achieve a higher saccharification efficiency. Saccharification of pretreated rice straw using BEDS at 1.5 V showed 90% phenolic reduction (Phr), thereby resulting in a maximum saccharification yield of 85%. In addition, the specific power consumption when using BEDS (2.2 W/Kg Phr) was noted to be 24% lower than by the electrochemical process alone (2.89 W/kg Phr). To the best of our knowledge, this is the first study to implement BEDS for reduction of phenolic compounds in pretreated biomass.