Microtubule Inhibitory Effects of Various SJ Compounds on Tissue Culture Cells

  • Lee Jong Han (Department of Biology and the Institute of Life Sciences and Biotechnology Yonsei University) ;
  • Kang Dong Wook (Central Research institute, Samjin Pharm. Co., Ltd.) ;
  • Kwon Ho Suk (Central Research institute, Samjin Pharm. Co., Ltd.) ;
  • Lee Sun Hwan (Central Research institute, Samjin Pharm. Co., Ltd.) ;
  • Park Si Kyung (Central Research institute, Samjin Pharm. Co., Ltd.) ;
  • Chung Sun Gan (Central Research institute, Samjin Pharm. Co., Ltd.) ;
  • Chon Eui Hwan (Central Research institute, Samjin Pharm. Co., Ltd.) ;
  • Paik Soon Young (Department of Microbiology The Catholic University) ;
  • Lee Joo Hun (Department of Biology and the Institute of Life Sciences and Biotechnology Yonsei University)
  • Published : 2004.04.01

Abstract

SJ compounds (SJ8002 and related compounds) are a group of novel anticancer agents (Cho, Chung, Lee, Kwon, Kang, Joo, and Oh. PCT/KR02/00392). To explore the anticancer mechanism of these compounds, we examined the effect of SJ8002 on microtubules of six human cell lines. At a high concentration ($2\;{\mu}g/mL$), SJ8002 effectively disrupted microtubules of the six cell lines within 1 h. At lower concentrations ($0.05\~1.0\;{\mu}g/mL$), the antimicrotubule activity of SJ8002 varied defending on cell lines. The inhibition of in vitro polymerization of pure tubulin by SJ8002 suggested that SJ8002 acts on free tubulin, inhibits the polymerization of tubulin dimer into microtubules, and hence induces the depolymerization of microtubules.

Keywords

References

  1. Barbier, P., Gregoire, C., Devred, F., Sarrazin, M., and Peyrot, V., In vitro effect of cryptophycin 52 on microtubule assembly and tubulin: Molecular modeling of the mechanism of action of a new antimitotic drug. Biochemisry, 40, 13510-13519 (2001) https://doi.org/10.1021/bi010926z
  2. Cho, E.-H., Chung, S. G., Lee, S. H., Kwon, H. S., Kang, D. W., Joo, J. H., and Oh, J. W., 9-Anminoacridine derivatives and process for the preparation Thereof. PCT/KR02/00392, March, 2002
  3. Choudhury, G. G., Maity, S., Bhattacharyya, B., and Biswas, B. B., B-ring of colchicines and its role in taxol-induced tubulin polymerization. FEBS Lett., 197,31-34 (1986) https://doi.org/10.1016/0014-5793(86)80292-7
  4. Combeau, C., Provost, J., Lancerin, F., Toumoux, Y., Prodhomme, F., Herman, F., Lavelle, F., Leboul, J., and Vuilhorqne, M., RPR112378 and RPR115781: Two representatives of a new family of microtubule assembly inhibitors. Mol. Pharm., 57, 553-563 (2000) https://doi.org/10.1124/mol.57.3.553
  5. Gottsman, M. M., Fojo, T., and Bates, S. E., Multidrug resistance in cancer: role of ATP-dependent transporters. Nat. Rev. Cancer, 2,48-58 (2002) https://doi.org/10.1038/nrc706
  6. Gottsman, M. M., Pastan, I., and Ambudkar, S. V., P-glycoprotein and multidrug resistance. Curr. Op. Genet. Oev., 6, 610-617 (1996) https://doi.org/10.1016/S0959-437X(96)80091-8
  7. Hartley-Asp, B. and Gunnarsson, P. O., Growth and cell survival following treatment with estramucin, nor-nitrogen mustard, esteadiol and testosterone of a human prostate cancer cell line (DU145). J. Urol., 127,818-822 (1982) https://doi.org/10.1016/S0022-5347(17)54057-4
  8. Jordan, A., Hadfield, J. A., Lawrence, N. J., and McGown, A. T., Tubulin as a target for anticancer drugs: Agents which interact with the mitotic spindle. Med. Res. Rev., 18,259-296 (1998) https://doi.org/10.1002/(SICI)1098-1128(199807)18:4<259::AID-MED3>3.0.CO;2-U
  9. Jordan, M. A. and Wilson, L., Microtubules and actin filaments: dynamic targets for cancer chemotherapy. Curr. Op. Cell Biol., 10, 123-130 (1998) https://doi.org/10.1016/S0955-0674(98)80095-1
  10. Kruczynski, A. and Hill, B. T., Vinflunine, the latest Vinca alkaloid in clinical development. A review of its preclinical anticancer properties. Crit. Rev. Oncol. Hematol., 40, 159-173 (2001)
  11. Meyer, T. U., Kapoor, T. M., Haggarty, S. J., King, R. W., Schreiber, S. L., and Mitchison, T. J., Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen. Science, 286, 913-914 (1999) https://doi.org/10.1126/science.286.5441.913
  12. Murphy, D. B., Function of tubulin isoforms. Curr. Op. Cell Biol., 3,43-51 (1991) https://doi.org/10.1016/0955-0674(91)90164-T
  13. Nogales, E., Structral insights into microtubule function. Annu. Rev. Biophys. Biomol. Struct., 30, 397-420 (2001) https://doi.org/10.1146/annurev.biophys.30.1.397
  14. Raff, E. C., The role of multiple tubulin isoforms in cellular microtubule function. Microtubules, pp 85-109, Modern Cell Biology Vol. 13. Hyams J. S. and Lloyd C. W. (Ed). WileyLiss, Inc. New York (1994)
  15. Sakowicz, R., Berdelis, M. S., Ray, K., Blackburn, C. L., Hopmann, C., Faulkner, D. J., and Goldstein, L. S. B., A marine natural product inhibitor of kinesin motors. Science, 280,292-295 (1998) https://doi.org/10.1126/science.280.5361.292
  16. Shan, B., Medina, J. C., Santha, E., Frankmoelle, W. P., Chou, T.-C., Leamed, R. M., Narbut, M. R., Stott, D., Wu, P., Jaen, J. C., Rosen, T., Timmermans, P. B. M. W. M., and Beckmann, H., Selective, covalent modification of -tubulin residue Cys239 by T138067, an antitumor agent with in vivo efficacy against multidrug-resistant tumors. Proc. Natl. Acad. Sci. U.S.A., 96, 5686-5691 (1999) https://doi.org/10.1073/pnas.96.10.5686
  17. Smith, C. D. and Zhang, X., Mechanism of action of cryptophycin. J. Biol. Chem., 271,6192-6198 (1996) https://doi.org/10.1074/jbc.271.11.6192