• Title/Summary/Keyword: inhibitory ability

Search Result 711, Processing Time 0.022 seconds

Oxidative Stress Inhibitory Effects of Low Temperature-Aged Garlic (Allium sativum L.) Extracts through Free Radical Scavenging Activity (저온숙성마늘의 라디칼 소거 활성을 통한 산화스트레스 억제 효과)

  • Hwang, Kyung-A;Kim, Ga Ram;Hwang, Yu-Jin;Hwang, In-Guk;Song, Jin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.1
    • /
    • pp.27-34
    • /
    • 2016
  • Garlic has drawn attention as a food material for its anti-oxidative and anti-inflammatory properties as well as for prevention and treatment of cancer. In order to increase efficiency, various aging methods for garlic have been attempted. In particular, thermally processed garlic is known to have higher biological activities due to its various chemical changes during heat treatment. Therefore, in this study, we investigated the anti-oxidative effects of garlic extracts aged at low temperature ($60{\sim}70^{\circ}C$). In the results, 2,2-diphenyl-1-picrylhydrazyl and 2,2-azino-bis (3-ethylbenzo-thiazoline-6-sulfonate) radical scavenging activities and ferric reducing ability of low temperature-aged garlic (LTAG) were similar to those of raw garlic. LTAG also showed decreased lipopolysaccharide (LPS)-induced production of reactive oxygen species, although there were not significant differences among samples. In addition, xanthine oxidase activity was inhibited by LTAG; the 15 days and $60^{\circ}C$ extract showed outstanding inhibition compared with the others. To understand the molecular mechanisms behind the anti-oxidative activity of LTAG, we performed quantitative real-time PCR analysis. The 30 days and $70^{\circ}C$ extract upregulated mRNA expression of antioxidant enzymes such as Cu/Zn-superoxide dismutase (SOD), Mn-SOD, glutathione peroxidase, and catalase in LPS-stimulated RAW 264.7 cells. This result indicates that LTAG can be a functional food as a nature antioxidant and antioxidant substance.

Disulfiram Suppresses Invasive Ability of Osteosarcoma Cells Via the Inhibition of MMP-2 and MMP-9 Expression

  • Cho, Hyun-Ji;Lee, Tae-Sung;Park, Jae-Bok;Park, Kwan-Kyu;Choe, Jung-Yoon;Sin, Doo-Il;Park, Yoon-Yub;Moon, Yong-Suk;Lee, Kwang-Gill;Yeo, Joo-Hong;Han, Sang-Mi;Cho, Young-Su;Choi, Myeong-Rak;Park, Nam-Gyu;Lee, Yun-Sik;Chang, Young-Chae
    • BMB Reports
    • /
    • v.40 no.6
    • /
    • pp.1069-1076
    • /
    • 2007
  • Cancer cells, characterized by local invasion and distant metastasis, are very much dependant on the extracellular matrix. The expression of matrix metalloproteinases (MMPs) has been implicated in the invasion and metastasis of cancer cells. In this study, we reported the effects of disulfiram, a clinically used anti-alcoholism drug, on tumor invasion suppression, as well as its effects on the activity of MMP-2 and MMP-9 in human osteosarcoma cells (U2OS). Disulfiram has been used for alcohol aversion therapy. However, recent reports have shown that disulfiram may have potential in the treatment of human cancers. Herewith, we showed that the anti-tumor effects of disulfiram, in an invasion assay using U2OS cells and that disulfiram has a type IV collagenase inhibitory activity that inhibits expression of genes and proteins responsible for both cell and non-cell mediated invasion on pathways. In conclusion, disulfiram inhibited expression of MMP-2 and MMP-9 and it regulated the invasion of human osteosarcoma cells. These observations raise the possibility of disulfiram being used clinical for the inhibition of cancer invasion.

Aspirin-Triggered Resolvin D1 Inhibits TGF-β1-Induced EndMT through Increasing the Expression of Smad7 and Is Closely Related to Oxidative Stress

  • Shu, Yusheng;Liu, Yu;Li, Xinxin;Cao, Ling;Yuan, Xiaolong;Li, Wenhui;Cao, Qianqian
    • Biomolecules & Therapeutics
    • /
    • v.24 no.2
    • /
    • pp.132-139
    • /
    • 2016
  • The endothelial-mesenchymal transition (EndMT) is known to be involved in the transformation of vascular endothelial cells to mesenchymal cells. EndMT has been confirmed that occur in various pathologic conditions. Transforming growth factor ${\beta}1$ (TGF-${\beta}1$) is a potent stimulator of the vascular endothelial to mesenchymal transition (EMT). Aspirin-triggered resolvin D1 (AT-RvD1) has been known to be involved in the resolution of inflammation, but whether it has effects on TGF-${\beta}1$-induced EndMT is not yet clear. Therefore, we investigated the effects of AT-RvD1 on the EndMT of human umbilical vein vascular endothelial cells line (HUVECs). Treatment with TGF-${\beta}1$ reduced the expression of Nrf2 and enhanced the level of F-actin, which is associated with paracellular permeability. The expression of endothelial marker VE-cadherin in HUVEC cells was reduced, and the expression of mesenchymal marker vimentin was enhanced. AT-RvD1 restored the expression of Nrf2 and vimentin and enhanced the expression of VE-cadherin. AT-RvD1 did also affect the migration of HUVEC cells. Inhibitory ${\kappa}B$ kinase 16 (IKK 16), which is known to inhibit the NF-${\kappa}B$ pathway, had an ability to increase the expression of Nrf2 and was associated with the inhibition effect of AT-RvD1 on TGF-${\beta}1$-induced EndMT, but it had no effect on TGF-${\beta}1$-induced EndMT alone. Smad7, which is a key regulator of TGF-${\beta}$/Smads signaling by negative feedback loops, was significantly increased with the treatment of AT-RvD1. These results suggest the possibility that AT-RvD1 suppresses the TGF-${\beta}1$-induced EndMT through increasing the expression of Smad7 and is closely related to oxidative stress.

Isolation and Genetic Transformation of Primordial Germ Cell (PGC)-Derived Cells from Cattle, Goats, Rabbits and Rats

  • Lee, C.K.;Moore, K.;Scales, N.;Westhusin, M.;Newton, G.;Im, K.S.;Piedrahita, J.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.5
    • /
    • pp.587-594
    • /
    • 2000
  • At present embryonic stem (ES) cells with confirmed pluripotential properties are only available in the mouse. Recently, we were able to isolate, culture and genetically transform primordial germ cell (PGC)-derived cells from pig embryos and demonstrate their ability to contribute to chimera development in the pig. In order to determine whether the system we developed could be used to isolate embryonic germ (EG) cells from other mammalian species, we placed isolated PGCs from cattle, goats, rabbits and rats in culture. Briefly, PGCs were isolated from fetuses of cow (day 30-50), goat (day 25), rabbit (day 15-18) and rat (day 11-12), and plated on STO feeder cells in Dulbecco's modified Eagle's medium (DMEM): Ham's F10 medium (1:1) supplemented with 0.01 mM nonessential amino acids, 2 mM L-glutamine, 0.1 mM $\beta$ - mercaptoethnol, soluble recombinant human stem cell factor (SCF; 40ng/ml), human basic fibroblast growth factor (bFGF; 20ng/ml) and human leukemia inhibitory factor (LIF; 20ng/ml). For maintenance of the cells, colonies were passed to fresh feeders every 7-10 days. In all species tested, we were able to obtain and maintain colonies with ES-like morphology. Their developmental potential was tested by alkaline phosphatase (AP) staining and in vitro differentiation assay. For genetic transformation, cells were electroporated with a construct containing the green fluorescent protein (GFP) under the control of the cytomegalovirus (CMV) promoter. GFP-expressing colonies were detected in cattle, rabbits and rats. These results suggest that PGC-derived cells from cattle, goats, rabbits and rats can be isolated, cultured, and genetically transformed, and provide the basis for analyzing their developmental potential and their possible use for the precise genetic modification of these species.

Antioxidative and Antimutagenic Effects of the Ethanol Elrtract from Cordyceps militaris (번데기동충하초(Cordyceps militaris) 에탄을 추출물의 항산화성 및 항돌연변이원성 효과)

  • 김미남;오상화;이득식;함승시
    • Food Science and Preservation
    • /
    • v.8 no.1
    • /
    • pp.109-117
    • /
    • 2001
  • Cordyceps militaris is a parasitic fungus that has been used as a Chinese medicine for the treatment of fatigue, debility, kidney disease, tuberculosis, asthma and cardiac insufficiency etc. This study was carried out to determine the antioxidative and antimutagenic effects of Cordyceps militaris using DPPH free radical donating method and Ames test, respectively. They were extracted with ethanol and then further fractionated to n-hexane, chloroform, ethyl acetate, butanol and water, stepwise. Among five fractions, the EtOAc and BuOH fractions showed the highest electron donating activities, about 2-fold higher than other fractions. In Ames test, most of the extracts had strong antimutagenic effects against the mutagenesis induced by N-methyl-N'-nitro-N-nitrosoguanidine(MNNG), 4-nitroquinoline-1-oxide(4NQO), benzo($\alpha$)pyrene(B($\alpha$)P) and 3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indol (Trp-P-1). The EtOH extracts of C. militaris (200 $\mu\textrm{g}$/plate) showed 62.8%, 74.4% and 67.2% inhibitory effects on the mutagenesis induced by 4NQO, B($\alpha$)P and Trp-P-1, respectively, against TA98 strain, whereas 78.1%, 78.6%, 78.6% and 82.7% inhibition were observed on the mutagenesis induced by MNNG, 4NQO, B($\alpha$)P and Trp-P-1, respectively, against TA100 strain. Especially, the BuOH fraction showed the highest antimutagenic effects against mutation induced by MNNG.

  • PDF

Physiological Characteristics and GABA Production of Lactobacillus plantarum K74 isolated from Kimchi (김치에서 분리한 Lactobacillus plantarum K74의 GABA 생산 및 생리적 특성)

  • Park, Sun-Young;Shim, Hye-Young;Kim, Kee-Sung;Lim, Sang-Dong
    • Journal of Dairy Science and Biotechnology
    • /
    • v.31 no.2
    • /
    • pp.143-152
    • /
    • 2013
  • Aminobutyric acid (GABA), a major inhibitory neurotransmitter in the central nervous system of animals, has several physiological effects including anti-hypertensive, diuretic, tranquilizing, and anti-stress properties, in humans. The purpose of this study was to investigate Lactobacillus plantarum K74, which was isolated from kimchi and selected as a strain with a high ability to produce GABA, to develop a new starter culture for fermented milk production. L. plantarum K74 produced $134.52{\mu}g/mL$ GABA in MRS broth containing 1% MSG, $212.27{\mu}g/mL$ GABA in MRS broth containing 2% MSG, and $234.63{\mu}g/mL$ GABA in MRS broth containing 3% MSG. The optimum growth temperature of L. plantarum K74 was $34^{\circ}C$, reaching a pH of 4.4 after 18 hours of growth. L. plantarum K74 was most sensitive to novobiocin out of 16 different antibiotics tested, and was most resistant to kanamycin and polymyxin B. L. plantarum K74 did not produce ${\beta}$-glucuronidase, a carcinogenic enzyme, and was comparatively tolerant to bile juice and low pH. Furthermore, it displayed resistance to Escherichia coli, Salmonella typhimurium, and Staphylococcus aureus at rates of 54.9%, 46.3%, and 0.7%, respectively.

  • PDF

Production of Phenyl Lactic Acid (PLA) by Lactic Acid Bacteria and its Antifungal Effect

  • Song, June-Seob;Jang, Joo-Yeon;Han, Chang-Hoon;Yoon, Min-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.2
    • /
    • pp.125-131
    • /
    • 2015
  • Phenyllactic acid (PLA) which is known as antimicrobial compound can be synthesized through the reduction of phenylpyruvic acid (PPA) by lactate dehydrogenase (LDH) of lactic acid bacteria (LAB). LAB producing PLA was isolated from Korea Kimchi and identified to Lactobacillus plantarum SJ21 by 16 rRNA gene sequence analysis. Cell-free supernatant (CFS) from L. plantarum SJ21 was assessed for both the capability to produce the antimicrobial compound PLA and the antifungal activity against four fungal pathogens (Rhizoctonia solani, Aspergillus oryzae, Botrytis cinerea, and Collectotricum aculatum). PLA concentration was investigated to be 3.23mM in CFS when L. plantarum SJ21 was grown in MRS broth containing 5mM PPA for 16 h. PLA production also could be promoted by the supplement of PPA and phenylalanine in MRS broth, but inhibited by the supplement of 4-hydroxyphenylpyruvic acid and tyrosine as precursors. Antifungal activity demonstrated that all fungal pathogens were sensitive to 5% CFS (v/v) of L. plantarum SJ21 with average growth inhibitions ranging from 27.32% to 69.05% (p<0.005), in which R. solani was the most sensitive to 69.05% and followed by B. cinerea, C. aculatum, and A. oryzae. The minimum inhibitory concentration (MIC) for commercial PLA was also investigated to show the same trend in the range from $0.35mg\;mL^{-1}$ (2.11 mM) to $0.7mg\;mL^{-1}$ (4.21 mM) at pH 4.0. The inhibition ability of CFS against the pathogens was not affected by heating or protease treatment. However, pH modification in CFS to 6.5 caused an extreme reduction in their antifungal activity. These results may indicate that antifungal activities in CFS were caused by acidic compounds like PLA or organic acids rather than proteins or peptides molecules.

INHIBITION OF GLUCAN SYNTHESIS RELATED GENE EXPRESSION OF STREPTOCOCCUS MUTANS BY XYLITOL TREATMENT (자일리톨 섭취에 따른 Streptococcus mutans의 글루칸 생성관련 유전자 발현 억제효과)

  • Kim, Ji-Hye;Lee, Young-Eun;Ahn, Sang-Hun;Choi, Youn-Hee;Nam, Soon-Heyun;Song, Keun-Bae
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.36 no.4
    • /
    • pp.531-538
    • /
    • 2009
  • Xylitol has the ability to reduce the adherence of Streptococcus mutans(S. mutans), which can make it easier to remove plaque, decrease acid production and inhibit dental caries. There are few reports on the effects of xylitol on the expression of the virulence related genes in S. mutans. This study examined the inhibitory effect of chewing gum containing xylitol on glucan synthesis related gene expression of S. mutans. Participants were voluntarily recruited for a women's oral health prevention program, classified into two groups(a control and a xylitol group), and then followed for 2 years. Twenty salivary samples were randomly selected from each group. Colony count and real-time reverse transcription polymerase chain reaction were used to analyze the characteristics of S. mutans. The following results were obtained: The S. mutans counts decreased steadily in the xylitol group over the study period(p<0.05). The expression of the virulence related genes (gtfB, gtfC and gtfD) was significantly lower in the xylitol group than in the control groups (p<0.05). In conclusion, these results suggest that chewing xylitol gum for a long period of time may reduce the expression of the genes associated with S. mutans virulence, which can result in a decrease growth of S. mutans colonies as a result.

  • PDF

Qualities and Antioxidant Activity of Lactic Acid Fermented-Potato Juice (젖산 발효 감자주스의 품질 특성 및 항산화 활성)

  • Kim, Nam Jo;Yoon, Kyung Young
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.4
    • /
    • pp.542-549
    • /
    • 2013
  • This study was conducted to investigate the chemical properties and functionality of probiotic potato juice fermented by Lactobacillus casei. Free sugar content (especially glucose) of potatoes decreased by fermentation, but organic acid contents increased by fermentation. Although the free amino acid content of Superior juice significantly decreased after fermentation, Haryeong significantly increased after fermentation. ${\gamma}$-Aminobutyric acid, a functional amino acid, was detected at high levels in all samples and slightly decreased with fermentation, but not significantly. The total polyphenol content of potato juice showed insignificant changes in all samples by fermentation. The hydroxyl radical scavenging activity of all samples was more than 90%, and most of the activity was maintained after fermentation. The nitrite scavenging ability of all samples greatly decreased with fermentation; however a SOD-like activity slightly increased with fermentation, except for Haryeong. There was a significant xanthine oxidase inhibitory effect in fresh potato juice (more than 45%) and a low loss by fermentation. From our results, most of the chemical properties and functionality of potato juice are maintained after fermentation, although free sugar content and nitrite scavenging activity decline. Thus probiotic potato juice fermented by lactic acid could be used as a functional beverage.

Hypoglycemic Effect of the Methanol Extract of Soybean Sprout in Streptozotocin-Induced Diabetic Rats (Streptozotocin 유발 당뇨쥐에 있어서 콩나물 메탄올 추출물의 헐당강하효과)

  • 김정인;강민정;배세연
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.6
    • /
    • pp.921-925
    • /
    • 2003
  • To control blood glucose level as close to normal is the major goal of treatment of diabetes mellitus. $\alpha$-glucosidase is the enzyme to digest dietary carbohydrate and inhibition of $\alpha$-glucosidase could suppress postprandial hyperglycemia. The methanol extract of soybean sprout was tested for the inhibitory activities against $\alpha$-glucosidase in vitro. Soybean sprout extract inhibited yeast $\alpha$-glucosidase activity by 24.5% at the concentration of 5 mg/mL. The methanol extract of soybean sprout was subsequently subjected to sequential fractionation with hexane, ethyl acetate, butanol and water. Among the fractions tested ethyl acetate-soluble fraction showed relatively strong inhibition against $\alpha$-glucosidase by 36.3% at the concentration of 5 mg/mL. Acarbose, standard $\alpha$-glucosidase inhibitor, inhibited $\alpha$-glucosidase activity by 40.1%. The ability of soybean sprout extract to lower postprandial glucose was studied in streptozotocin-induced diabetic rats. Starch solution (1 g/kg) with and without the methanol extract of soybean sprout (500 mg/kg) was administered to diabetic rats after an overnight-fast by gastric intubation. A single oral dose of soybean sprout extract inhibited the increase in blood glucose levels significantly at 60, 90, 120, 180 min (p<0.05) and decreased incremental response areas under the glycemic response curve significantly (p<0.05). These results suggest that soybean sprout might exert hypoglycemic effect by inhibiting $\alpha$-glucosidase activity.