• 제목/요약/키워드: inhibitory ability

검색결과 711건 처리시간 0.025초

Inhibition of Pathogenic Bacteria and Fungi by Natural Phenoxazinone from Octopus Ommochrome Pigments

  • Lewis-Lujan, Lidianys Maria;Rosas-Burgos, Ema Carina;Ezquerra-Brauer, Josafat Marina;Burboa-Zazueta, Maria Guadalupe;Assanga, Simon Bernard Iloki;del Castillo-Castro, Teresa;Penton, Giselle;Plascencia-Jatomea, Maribel
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권8호
    • /
    • pp.989-1002
    • /
    • 2022
  • Cephalopods, in particular octopus (Octopus vulgaris), have the ability to alter their appearance or body pattern by showing a wide range of camouflage by virtue of their chromatophores, which contain nanostructured granules of ommochrome pigments. Recently, the antioxidant and antimicrobial activities of ommochromes have become of great interest; therefore, in this study, the pH-dependent redox effect of the extraction solvent on the antioxidant potential and the structural characterization of the pigments were evaluated. Cell viability was determined by the microdilution method in broth by turbidity, MTT, resazurin, as well as fluorescence microscopy kit assays. A Live/Dead Double Staining Kit and an ROS Kit were used to elucidate the possible inhibitory mechanisms of ommochromes against bacterial and fungal strains. The results obtained revealed that the redox state alters the color changes of the ommochromes and is dependent on the pH in the extraction solvent. Natural phenoxazinone (ommochromes) is moderately toxic to the pathogens Staphylococcus aureus, Bacillus subtilis, Salmonella Typhimurium and Candida albicans, while the species Pseudomonas aeruginosa and Pseudomonas fluorescens, and the filamentous fungi Aspergillus parasiticus, Alternaria spp. and Fusarium verticillioides, were tolerant to these pigments. UV/visible spectral scanning and Fourier- transform infrared spectroscopy (FTIR) suggest the presence of reduced ommatin in methanol/ HCl extract with high intrinsic fluorescence.

유령멍게(Ciona intestinalis)와 노랑꼭지유령멍게(Ciona savignyi) 에탄올 추출물의 항산화 효과 (The Antioxidation Effect of Ethanol Extracts from Ciona intestinalis and Ciona savignyi)

  • 이정은;강상모
    • 융합정보논문지
    • /
    • 제11권4호
    • /
    • pp.186-193
    • /
    • 2021
  • 유령멍게와 노랑꼭지유령멍게는 국내의 경우, 항만, 선박의 바닥, 양식장에 대량으로 발생하여 큰 피해를 입혀, 위해종으로 지정되어 있다. 따라서 이들을 이용하는 측면에서 화장품 원료로의 사용 가능성을 검토하였다. 유령멍게와 노랑꼭지유령멍게를 70% 에탄올로 추출물을 제조하여 항산화능을 측성하였다. 유령멍게와 노랑꼭지유령멍게 추출물 20 mg/mL에서 DPPH는 각각 71.80%, 21.40%를 보였고, ABTS는 각각 95.47%, 27.53%, nitric oxide 생성 억제능은 각각 97.47%, 88.90%로 나타났다. 총 페놀 함량은 유령멍게와 노랑꼭지유령멍게에서 각각 0.081, 0.041 mg gallic acid/mg extract으로 나타났다. 결과적으로 노랑꼭지유령멍게보다 유령멍게에서 다소 높은 항산화능을 보였다. 이들은 추출물은 동물성 유래 항산화물질들로 화장품 소재로서 활용 가능함을 확인하였다.

Inhibition of COX-2 Impairs Colon Cancer Liver Metastasis through Reduced Stromal Cell Reaction

  • Herrero, Alba;Benedicto, Aitor;Romayor, Irene;Olaso, Elvira;Arteta, Beatriz
    • Biomolecules & Therapeutics
    • /
    • 제29권3호
    • /
    • pp.342-351
    • /
    • 2021
  • Liver colonization is initiated through the interplay between tumor cells and adhesion molecules present in liver sinusoidal endothelial cells (LSECs). This crosstalk stimulates tumor COX-2 upregulation and PGE2 secretion. To elucidate the role of the LSEC intercellular adhesion molecule-1 (ICAM-1) in the prometastatic response exerted by tumor and stromal COX-2, we utilized celecoxib (CLX) as a COX-2 inhibitory agent. We analyzed the in vitro proliferative and secretory responses of murine C26 colorectal cancer (CRC) cells to soluble ICAM-1 (sICAM-1), cultured alone or with LSECs, and their effect on LSEC and hepatic stellate cell (HSC) migration and in vivo liver metastasis. CLX reduced sICAM-1-stimulated COX-2 activation and PGE2 secretion in C26 cells cultured alone or cocultured with LSECs. Moreover, CLX abrogated sICAM-1-induced C26 cell proliferation and C26 secretion of promigratory factors for LSECs and HSCs. Interestingly, CLX reduced the protumoral response of HSC, reducing their migratory potential when stimulated with C26 secretomes and impairing their secretion of chemotactic factors for LSECs and C26 cells and proliferative factors for C26 cells. In vivo, CLX abrogated the prometastatic ability of sICAM-1-activated C26 cells while reducing liver metastasis. COX-2 inhibition blocked the creation of a favorable tumor microenvironment (TME) by hindering the intratumoral recruitment of activated HSCs and macrophages in addition to the accumulation of fibrillar collagen. These results point to COX-2 being a key modulator of processes initiated by host ICAM-1 during tumor cell/LSEC/HSC crosstalk, leading to the creation of a prometastatic TME in the liver.

국내산 삼채 에탄올 추출물의 항염증 효과 (The anti-inflammatory effects of ethanol extract of Allium Hookeri cultivated in South Korea)

  • 배기춘;배대열
    • 대한본초학회지
    • /
    • 제27권6호
    • /
    • pp.55-61
    • /
    • 2012
  • Objectives : Allium Hookeri (AH) is a traditional herb to treat inflammatory diseases in India and Myanmar. Recently, AH cultivation was succeeded in South Korea. This study was performed to evaluate the anti-inflammatory effects of Korean AH in RAW264.7 cells, mouse macrophage cell line. Methods : To evaluate the anti-inflammatory effects of root of AH, we prepared the 70% ethanol extract, then we examined the productions of nitrite, and pro-inflammatory cytokines. To examine the nitrite, and cytokines, the RAW264.7 cells were treated with AH, then stimulated with lipopolysaccharide (LPS, 500 ng/ml) for 24 h. Then the cells were harvested for griess assay, ELISA and real-time reverse transcription polymerase chain reaction (RT-PCR). Also to detect the ability of AH to induce heme oxygenase-1 (HO-1), we examined the HO-1 expression using real time RT-PCR and western blot. Furthermore, we examined the mitogen activated-protein kinases (MAPKs) and nuclear factor kappa B (NF-${\kappa}B$) activation to find out the underlying mechanisms. Results : AH ethanol extract significantly inhibited the productions of nitrite and interleukin (IL)-$1{\beta}$. AH treatment increased the HO-1 expression dramatically at 1 h, then peaked at 3 h. When the HO-1 was inhibited by tin (Sn) protoporphryin-IX (SnPP), the anti-inflammatory action of AH was reversed. AH treatment inhibited the activation of p38, but not extracelluar signal-regulated kinase (ERK 1/2) and c-Jun $NH_2$-terminal kinase (JNK) and also the degradation of inhibitory kappa B a (Ik-$B{\alpha}$) in the LPS-stimulated RAW 264.7 cells. Conclusions : These data could suggest that AH exerts anti-inflammatory influences through up-regulation of HO-1 and deactivation of p38.

Anti-Oomycete Activity and Pepper Root Colonization of Pseudomonas plecoglossicida YJR13 and Pseudomonas putida YJR92 against Phytophthora capsici

  • Elena, Volynchikova;Ki Deok, Kim
    • The Plant Pathology Journal
    • /
    • 제39권1호
    • /
    • pp.123-135
    • /
    • 2023
  • Previously, Pseudomonas plecoglossicida YJR13 and Pseudomonas putida YJR92 from a sequential screening procedure were proven to effectively control Phytophthora blight caused by Phytophthora capsici. In this study, we further investigated the anti-oomycete activities of these strains against mycelial growth, zoospore germination, and germ tube elongation of P. capsici. We also investigated root colonization ability of the bacterial strains in square dishes, including cell motility (swimming and swarming motilities) and biofilm formation. Both strains significantly inhibited mycelial growth in liquid and solid V8 juice media and M9 minimal media, zoospore germination, and germ tube elongation compared with Bacillus vallismortis EXTN-1 (positive biocontrol strain), Sphingomonas aquatilis KU408 (negative biocontrol strain), and MgSO4 solution (untreated control). In diluted (nutrient-deficient) V8 juice broth, the tested strain populations were maintained at >108 cells/ml, simultaneously providing mycelial inhibitory activity. Additionally, these strains colonized pepper roots at a 106 cells/ml concentration for 7 days. The root colonization of the strains was supported by strong swimming and swarming activities, biofilm formation, and chemotactic activity towards exudate components (amino acids, organic acids, and sugars) of pepper roots. Collectively, these results suggest that strains YJR13 and YJR92 can effectively suppress Phytophthora blight of pepper through direct anti-oomycete activities against mycelial growth, zoospore germination and germ tube elongation. Bacterial colonization of pepper roots may be mediated by cell motility and biofilm formation together with chemotaxis to root exudates.

Anti-Obesity and Inhibitory Effect of Lipid Accumulation of The Cone of Pinus rigida × Pinus taeda in 3T3-L1 Cells

  • Da-Yoon Lee;Tae-Won Jang;So-Yeon Han;Seo-Yoon Park;Woo-Jin Oh;Jae-Ho Park
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2023년도 임시총회 및 춘계학술대회
    • /
    • pp.55-55
    • /
    • 2023
  • With the COVID-19 pandemic, there is increasing interest in anti-obesity strategies. According to the National Statistical Office, the obesity rate in Korea was 38.3% in 2020 and 37.1% in 2021. Obesity is a risk factor for several severe diseases, including stroke, heart disease, type 2 diabetes, and certain types of cancer. Pinus rigida × Pinus taeda is a hybrid of Pinus rigida Mill and Pinus taeda Linn, and its cones are considered a by-product. Although previous studies have investigated their pharmacological effects on antioxidant activity and protection against oxidative DNA damage, few researchers have explored their potential as functional natural materials. Therefore, we evaluated the anti-obesity effects of the cone of ethyl acetate fraction of P. rigida × P. taeda (ERT), specifically its ability to inhibit lipid accumulation. Our analysis showed that ERT contains phytochemicals (catechin and caffeic acid) which are known to improve immune function and inhibit cell damage. ERT inhibited lipid droplet accumulation at the cellular levels through Oil Red O staining. Furthermore, ERT suppressed the expression of adipogenic transcription factors (PPARγ and CEBP/α) as well as downstream lipogenic target genes (FAS and SREBP-1) thereby inhibiting adipogenesis. ERT also down-regulated key adipogenic markers, including aP2α, while inducing the phosphorylation of AMPK. It has been reported that PPARγ and CEBP/α are expressed in the early stages of adipose differentiation, while SREBP-1 is expressed in the late stage. Therefore, our findings suggest that ERT activates AMPK signaling pathways, which inhibits adipogenic transcription factors (PPARγ, C/EBPα, and SREBP1) and lipogenic genes (FAS and aP2α), thereby blocking lipid accumulation and preventing obesity and related disorders. ERT showed potential as a new resource for developing a functional material for anti-obesity agents.

  • PDF

Bioremoval of Cadmium(II), Nickel(II), and Zinc(II) from Synthetic Wastewater by the Purple Nonsulfur Bacteria, Three Rhodobacter Species

  • Jin Yoo;Eun-Ji Oh;Ji-Su Park;Deok-Won Kim;Jin-Hyeok Moon;Deok-Hyun Kim;Daniel Obrist;Keun-Yook Chung
    • 공업화학
    • /
    • 제34권6호
    • /
    • pp.640-648
    • /
    • 2023
  • The purpose of this study was to determine the inhibitory effect of heavy metals [Cd(II), Ni(II), and Zn(II)] on the growth of Rhodobacter species (Rhodobacter blasticus, Rhodobacter sphaeroides, and Rhodobacter capsulatus) and their potential use for Cd(II), Ni(II), and Zn(II) bioremoval from liquid media. The presence of toxic heavy metals prolonged the lag phase in growth and reduced biomass growth for all three Rhodobacter species at concentrations of Cd, Ni, and Zn above 10 mg/L. However, all three Rhodobacter species also had a relatively high specific growth rate against each toxic heavy metal stress test for concentrations below 20 mg/L and possessed a potential bioaccumulation ability. The removal efficiency by all strains was highest for Cd(II), followed by Ni(II), and lowest for Zn(II), with the removal efficiency of Cd(II) by Rhodobacter species being 66% or more. Among the three strains, R. blasticus showed a higher removal efficiency of Cd(II) and Ni(II) than R. capsulatus and R. sphaeroides. Results also suggest that the bio-removal processes of toxic heavy metal ions by Rhodobacter species involve both bioaccumulation (intracellular uptake) and biosorption (surface binding).

거북손(Pollicipes mitella) 추출물의 항균 활성 및 항염증 활성 탐색 (Screening of Anti-microbial and Anti-inflammatory Activity of Common Stalked Barnacle Pollicipes mitella Extract)

  • 문호성;이인아;서정길
    • 한국수산과학회지
    • /
    • 제57권3호
    • /
    • pp.216-226
    • /
    • 2024
  • This study screened the antimicrobial and anti-inflammatory activities of three extracts [1% acetic acid (HAc), distilled water (D.W.), and ethanol] from the common stalked barnacle Pollicipes mitella. Among the extracts, the 1% HAc extract showed the strongest antibacterial activity against several bacteria, but exhibited no activity against Candida albicans. To improve the degree of separation of the 1% HAc extract, solid-phase extraction was performed using a C18 cartridge with three solvents (D.W., 60A, and 100A). The 1% HAc 60A eluate showed the strongest antibacterial activity and enzyme, salt, and temperature stability, with no hemolytic activity. In addition, strong DNA-binding ability but no bacterial membrane permeability was observed. These results indicate that the P. mitella 1% HAc 60A eluate may contain antibacterial organic compounds that target intracellular components but not bacterial membranes. In addition, the 1% HAc 60A eluate exhibited potent inhibitory activity to reduce the production of inflammatory mediators (nitric oxide and prostaglandin E2) and pro-inflammatory cytokines (tumor necrosis factor-α, interleukin (IL)-6, and IL-1β) with no cytotoxicity. Therefore, the P. mitella 1% HAc 60A eluate has anti-inflammatory activity. Collectively, our results suggest that the P. mitella 1% HAc 60A eluate can be used as a bioactive source with antibacterial and anti-inflammatory activities.

Inhibition of Verticillium Wilt in Cotton through the Application of Pseudomonas aeruginosa ZL6 Derived from Fermentation Residue of Kitchen Waste

  • Qiuhong Niu;Shengwei Lei;Guo Zhang;Guohan Wu;Zhuo Tian;Keyan Chen;Lin Zhang
    • Journal of Microbiology and Biotechnology
    • /
    • 제34권5호
    • /
    • pp.1040-1050
    • /
    • 2024
  • To isolate and analyze bacteria with Verticillium wilt-resistant properties from the fermentation residue of kitchen wastes, as well as explore their potential for new applications of the residue. A total of six bacterial strains exhibiting Verticillium wilt-resistant capabilities were isolated from the biogas residue of kitchen waste fermentation. Using a polyphasic approach, strain ZL6, which displayed the highest antagonistic activity against cotton Verticillium wilt, was identified as belonging to the Pseudomonas aeruginosa. Bioassay results demonstrated that this strain possessed robust antagonistic abilities, effectively inhibiting V. dahliae spore germination and mycelial growth. Furthermore, P. aeruginosa ZL6 exhibited high temperature resistance (42℃), nitrogen fixation, and phosphorus removal activities. Pot experiments revealed that P. aeruginosa ZL6 fermentation broth treatment achieved a 47.72% biological control effect compared to the control group. Through activity tracking and protein mass spectrometry identification, a neutral metalloproteinase (Nml) was hypothesized as the main virulence factor. The mutant strain ZL6ߡNml exhibited a significant reduction in its ability to inhibit cotton Verticillium wilt compared to the strain P. aeruginosa ZL6. While the inhibitory activities could be partially restored by a complementation of nml gene in the mutant strain ZL6CMߡNml. This research provides a theoretical foundation for the future development and application of biogas residue as biocontrol agents against Verticillium wilt and as biological preservatives for agricultural products. Additionally, this study presents a novel approach for mitigating the substantial amount of biogas residue generated from kitchen waste fermentation.

Gilteritinib Reduces FLT3 Expression in Acute Myeloid Leukemia Cells

  • Thi Lam Thai;Sun-Young Han
    • Biomolecules & Therapeutics
    • /
    • 제32권5호
    • /
    • pp.577-581
    • /
    • 2024
  • Acute myeloid leukemia (AML) is a genetically diverse and challenging malignancy, with mutations in the FLT3 gene being particularly common and deleterious. Gilteritinib, a potent FLT3 inhibitor, has been approved by the U.S. Food and Drug Administration (FDA) for the treatment of relapsed/refractory AML with FLT3 mutations. Although gilteritinib was developed based on its inhibitory activity against FLT3 kinase, it is important to understand the precise mechanisms of its antileukemic activity in managing drug resistance and discovering biomarkers. This study was designed to elucidate the effect of gilteritinib on the FLT3 expression level. The results showed that gilteritinib induced a dose-dependent decrease in both FLT3 phosphorylation and expression. This reduction was particularly pronounced after 48 h of treatment. The decrease in FLT3 expression was found to be independent of changes in FLT3 mRNA transcription, suggesting post-transcriptional regulatory mechanisms. Further studies were performed in various AML cell lines and cells with both FLT3 wild-type and FLT3 mutant exhibited FLT3 reduction by gilteritinib treatment. In addition, other FLT3 inhibitors were evaluated for their ability to reduce FLT3 expression. Other FLT3 inhibitors, midostaurin, crenolanib, and quizartinib, also reduced FLT3 expression, consistent with the effect of gilteritinib. These findings hold great promise for optimizing gilteritinib treatment in AML patients. However, it is important to recognize that further research is warranted to gain a full understanding of these mechanisms and their clinical implications in the context of FLT3 reduction.