Browse > Article
http://dx.doi.org/10.4014/jmb.2206.06043

Inhibition of Pathogenic Bacteria and Fungi by Natural Phenoxazinone from Octopus Ommochrome Pigments  

Lewis-Lujan, Lidianys Maria (Laboratorio de Microbiologia y Micotoxinas, Departamento de Investigacion y Posgrado en Alimentos, Universidad de Sonora)
Rosas-Burgos, Ema Carina (Laboratorio de Microbiologia y Micotoxinas, Departamento de Investigacion y Posgrado en Alimentos, Universidad de Sonora)
Ezquerra-Brauer, Josafat Marina (Laboratorio de Microbiologia y Micotoxinas, Departamento de Investigacion y Posgrado en Alimentos, Universidad de Sonora)
Burboa-Zazueta, Maria Guadalupe (Departamento de Investigaciones Cientificas y Tecnologicas)
Assanga, Simon Bernard Iloki (Department of Biological Chemical Sciences. Sonora University)
del Castillo-Castro, Teresa (Department of Research on Polymers and Materials, Sonora University)
Penton, Giselle (Centro de Ingenieria Genetica y Biotecnologia)
Plascencia-Jatomea, Maribel (Laboratorio de Microbiologia y Micotoxinas, Departamento de Investigacion y Posgrado en Alimentos, Universidad de Sonora)
Publication Information
Journal of Microbiology and Biotechnology / v.32, no.8, 2022 , pp. 989-1002 More about this Journal
Abstract
Cephalopods, in particular octopus (Octopus vulgaris), have the ability to alter their appearance or body pattern by showing a wide range of camouflage by virtue of their chromatophores, which contain nanostructured granules of ommochrome pigments. Recently, the antioxidant and antimicrobial activities of ommochromes have become of great interest; therefore, in this study, the pH-dependent redox effect of the extraction solvent on the antioxidant potential and the structural characterization of the pigments were evaluated. Cell viability was determined by the microdilution method in broth by turbidity, MTT, resazurin, as well as fluorescence microscopy kit assays. A Live/Dead Double Staining Kit and an ROS Kit were used to elucidate the possible inhibitory mechanisms of ommochromes against bacterial and fungal strains. The results obtained revealed that the redox state alters the color changes of the ommochromes and is dependent on the pH in the extraction solvent. Natural phenoxazinone (ommochromes) is moderately toxic to the pathogens Staphylococcus aureus, Bacillus subtilis, Salmonella Typhimurium and Candida albicans, while the species Pseudomonas aeruginosa and Pseudomonas fluorescens, and the filamentous fungi Aspergillus parasiticus, Alternaria spp. and Fusarium verticillioides, were tolerant to these pigments. UV/visible spectral scanning and Fourier- transform infrared spectroscopy (FTIR) suggest the presence of reduced ommatin in methanol/ HCl extract with high intrinsic fluorescence.
Keywords
Ommochromes; xanthommatin; Octopus vulgaris; antioxidant; antimicrobial activity; fluorescence;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Chan-Higuera JE, Carbonell-Barrachina AC, Cardenas-Lopez JL, Kacaniova M, Burgos-Hernandez A, Ezquerra-Brauer JM. 2019. Jumbo squid (Dosidicus gigas) skin pigments: chemical analysis and evaluation of antimicrobial and antimutagenic potential. J. Microbiol. Biotechnol. Food Sci. 9: 349-353.   DOI
2 Le Roes-Hill M. Goodwin C, Burton S. 2009. Phenoxazinone synthase: what's in a name?. Trends Biotechnol. 27: 248-258.   DOI
3 Shimizu S, Suzuki M, Tomoda A, Arai S, Taguchi H, Hanawa T, et al. 2004. Phenoxazine compounds produced by the reactions with bovine hemoglobin show antimicrobial activity against non-tuberculosis mycobacteria. Tohoku J. Exp. Med. 203: 47-52.   DOI
4 Ostrovsky MA, Zak PP, Dontsov AE. 2018. Vertebrate eye melanosomes and invertebrate eye ommochromes as screening cell organelles. Biol. Bull. 45: 570-579.   DOI
5 Linzen B. 1974. The Tryptophan → Ommochrome pathway in insects. Adv. Insect Physiol. 10: 117-246.   DOI
6 CLSI. Performance Standards for Antimicrobial Susceptibility Testing. 29th ed.CLSI supplement M100. Wayne: Clinical and Laboratory Standards Institute; 2019.
7 Mosmann T. 1983. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65: 55-63.   DOI
8 Hase S, Wakamatsu K, Fujimoto K, Inaba A, Kobayashi K, Matsumoto M. 2006. Characterization of the pigment produced by the planarian, Dugesia ryukyuensis. Pigment Cell Res. 19: 248-249.   DOI
9 Messenger JB. 2001. Cephalopod chromatophores: neurobiology and natural history. Biol. Rev. 76: 473-528.   DOI
10 Llandres AL, Figon F, Christides JP, Mandon N, Casas J, 2013. Environmental and hormonal factors controlling reversible color change in crab spiders. J. Exp. Biol. 216: 3886-3895.   DOI
11 Williams TL, DiBona CW, Dinneen SR, Jones Labadie SF, Chu F, Deravi LF. 2016. Contributions of phenoxazone-based pigments to the structure and function of nanostructured granules in squid chromatophores. Langmuir 32: 3754-3759.   DOI
12 Kumar A, Williams TL, Martin CA, Figueroa-Navedo AM, Deravi LF. 2018. Xanthommatin-based electrochromic displays inspired by nature. ACS Appl. Mater. Interfaces 10: 43177-43183.   DOI
13 Ushakova N, Dontsov A, Natalia Sakina N, Alexander Bastrakov A, Ostrovsky M. 2019. Antioxidative properties of melanins and ommochromes from black soldier fly Hermetia illucens. Biomolecules 9: 408.   DOI
14 Dontsov AE, Ushakova NA, Sadykovac VS, Bastrakov AI. 2020. Ommochromes from Hermetia illucens: isolation and study of antioxidant characteristics and antimicrobial activity. Appl. Biochem. Microbiol. 56: 91-95.   DOI
15 Aubourg SP, Torres-Arreola W, Trigo M, Ezquerra-Brauer JM. 2016. Partial characterization of jumbo squid skin pigment extract and its antioxidant potential in a marine oil system. Eur. J. Lipid Sci. Technol. 118: 1293-1304.   DOI
16 White TC. 2007. Mechanisms of resistance to antifungal agents. In: Murray PR, Baron EJ, Jorgensen JH, Landry ML, Pfaller MA. (Eds.). pp. 1961-1971. Manual of Clinical Microbiology, 9th Ed. ASM Press, Washington, DC.
17 Ezquerra-Brauer JM, Miranda JM, Cepeda A, Barros-Velazquez J, Aubourg SP. 2016. Effect of jumbo squid (Dosidicus gigas) skin extract on the microbial activity in chilled mackerel (Scomber scombrus). LWT Food Sci. Technol. 72: 134e140.
18 Farmer LA, Haidasz EA, Griesser M, Pratt DA. 2017. Phenoxazine: a privileged scaffold for radical-trapping antioxidants. J. Org. Chem. 82: 10523-10536.   DOI
19 Shah R, Margison K, Pratt DA. 2017. The potency of diarylamine radical-trapping antioxidants as inhibitors of ferroptosis underscores the role of autoxidation in the mechanism of cell death. ACS Chem. Biol. 12: 2538-2545.   DOI
20 Exner M, Bhattacharya S, Christiansen B, Gebel J, Goroncy-Bermes P, Hartemann P, et al. 2017. Antibiotic resistance: what is so special about multidrug-resistant Gram-negative bacteria? GMS Hyg. Infect. Control 12: Doc05
21 Espinel-Ingroff A. 2008. Mechanisms of resistance to antifungal agents: yeasts and filamentous fungi. Rev. Iberoam. Micol. 25: 101-106.   DOI
22 Kanafani ZA, Perfect JR. 2008. Resistance to antifungal agents: mechanisms and clinical impact. Clin. Infect. Dis. 46: 120-128.   DOI
23 Breijyeh Z. Jubeh B, Karaman R. 2020. Resistance of Gram-negative bacteria to current antibacterial agents and approaches to resolve it. Molecules 25: 1340.   DOI
24 O'Brien J, Wilson I, Orton T, Pognan F. 2000. Investigation of the alamar blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur. J. Biochem. 267: 5421-5426.   DOI
25 Li H, Zhou X, Huang Y, Liao B, Cheng L, Ren B. 2021. Reactive oxygen species in pathogen clearance: the killing mechanisms, the adaptation response, and the side effects. Front. Microbiol. 11: 622534.   DOI
26 Romero Y and Martinez A. 2015. Antiradical capacity of ommochromes. J. Mol. Model 21: 220.   DOI
27 Dominguez-Contreras JF, Munguia-Vega A, Ceballos-Vazquez BP, Arellano-Martinez M, Garcia-Rodriguez FJ, Culver M, 2018. Life histories predict genetic diversity and population structure within three species of octopus targeted by small-scale fisheries in Northwest Mexico Peer J. 6: e4295.   DOI
28 Prasad T, Saini P, Gaur NA, Vishwakarma RA, Khan LA, Haq QM. 2005. Functional analysis of CaIPT1, a sphingolipid biosynthetic gene involved in multidrug resistance and morphogenesis of Candida albicans. Antimicrob. Agents Chemother. 49: 3442-3452.   DOI
29 Jereb P, Roper CFE, Norman MD. Julian K Finn. Cephalopods of the world. An annotated and illustrated catalogue of cephalopod species known to date. pp. 370. Octopods and Vampire Squids. FAO Species Catalogue for Fishery Purposes. No. 4, Vol. 3. Rome, FAO. 2014.
30 Ezquerra-Brauer JM, Aubourg SP. 2019. Recent trends for the employment of jumbo squid (Dosidicus gigas) by-products as a source of bioactive compounds with nutritional, functional and preservative applications: a review. Int. J. Food Sci. Technol. 54: 987-998.   DOI
31 Figon F and Casas J. 2018. Ommochromes in invertebrates: biochemistry and cell biology. Biol. Rev. Camb Philos Soc. doi: 10.1111/ brv.12441. Online ahead of print.   DOI
32 Chatterjee A, Norton-Baker B, Bagge LE, Patel P, Gorodetsky AA. 2018. An introduction to color-changing systems from the cephalopod protein reflectin. Bioinspir. Biomim. 13: 045001.   DOI
33 Williams TL, Stephen L Senft, JingjieYeo, Francisco J, Martin-Martinez, Alan M Kuzirian, et al. 2019. Dynamic pigmentary and structural coloration within cephalopod chromatophore organs. Nat. Commun. 10: 1004.   DOI
34 Bolognese A, Correale G, Manfra M, Lavecchia A, Mazzoni O, Ettore Novellino, et al. 2002. Antitumor agents. 1. synthesis, biological evaluation, and molecular modeling of 5H-Pyrido[3,2-a] phenoxazin-5-one, a compound with potent antiproliferative activity. J. Med. Chem. 45: 5205-5216.   DOI
35 Riou M and Christides JP. 2010. Cryptic color change in a crab spider (Misumena vatia): identification and quantification of precursors and ommochrome pigments by HPLC. J. Chem. Ecol. 36: 412-423.   DOI
36 SAGARPA. CONAPESCA. Anuario Estadistico de Acuacultura y Pesca, 2017.