• Title/Summary/Keyword: inhibitors of CETP

Search Result 4, Processing Time 0.014 seconds

Cholesteryl Ester Transfer Protein (CETP) Deficiency and CETP Inhibitors

  • Mabuchi, Hiroshi;Nohara, Atsushi;Inazu, Akihiro
    • Molecules and Cells
    • /
    • v.37 no.11
    • /
    • pp.777-784
    • /
    • 2014
  • Epidemiologic studies have shown that low-density lipoprotein cholesterol (LDL-C) is a strong risk factor, whilst high-density lipoprotein cholesterol (HDL-C) reduces the risk of coronary heart disease (CHD). Therefore, strategies to manage dyslipidemia in an effort to prevent or treat CHD have primarily attempted at decreasing LDL-C and raising HDL-C levels. Cholesteryl ester transfer protein (CETP) mediates the exchange of cholesteryl ester for triglycerides between HDL and VLDL and LDL. We have published the first report indicating that a group of Japanese patients who were lacking CETP had extremely high HDL-C levels, low LDL-C levels and a low incidence of CHD. Animal studies, as well as clinical and epidemiologic evidences, have suggested that inhibition of CETP provides an effective strategy to raise HDL-C and reduce LDL-C levels. Four CETP inhibitors have substantially increased HDL-C levels in dyslipidemic patients. This review will discuss the current status and future prospects of CETP inhibitors in the treatment of CHD. At present anacetrapib by Merck and evacetrapib by Eli Lilly are under development. By 100mg of anacetrapib HDL-C increased by 138%, and LDL-C decreased by 40%. Evacetrapib 500 mg also showed dramatic 132% increase of HDL-C, while LDL-C decreased by 40%. If larger, long-term, randomized, clinical end point trials could corroborate other findings in reducing atherosclerosis, CETP inhibitors could have a significant impact in the management of dyslipidemic CHD patients. Inhibition of CETP synthesis by antisense oligonucleotide or small molecules will produce more similar conditions to human CETP deficiency and may be effective in reducing atherosclerosis and cardiovascular events. We are expecting the final data of prospective clinical trials by CETP inhibitors in 2015.

Suberitenone B: A Novel Inhibitor of Cholesteryl Ester Transfer Protein (CETP) with an Unprecedented Skeletal Class from the Antarctic Sponge Suberites sp.

  • Shin, Jongheon;Seo, Youngwan;Rho, Jung-Rae;Baek, Eunjoo;Kwon, Byoung-Mog;Jeong, Tae-Sook;Bok, Song-Hae
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1995.04a
    • /
    • pp.64-64
    • /
    • 1995
  • Cholesteryl Ester Transfer Protein (CETP) mediates the transfer of cholesterol ester and triglyceride between high-density lipoprotein (HDL) and other low-density lipoproteins, therefore, it might influence HDL levels. The levels of HDL is closely related to the atherogenic diseases in human and there were several reports that the trasgenic mice expressing CETP had much worse atherosclerosis than non-expressing control one. Therefore, selective inhibitors of CETP have the potential to be used as antiatherosclerotic agents. Continued screening for potent inhibitors of CETP led to the isolation of Suberitenone B from marine sponge. Suberitenone B, sesterterpenoids of a new skeletal class have been isolated from the sponge Suberites sp. collected from King George Island the Antartic. The structure of the metabolite has been determined by NMR experiments and chemical methods.

  • PDF

A Putative Histone Deacetylase Modulates the Biosynthesis of Pestalotiollide B and Conidiation in Pestalotiopsis microspora

  • Niu, Xueliang;Hao, Xiaoran;Hong, Zhangyong;Chen, Longfei;Yu, Xi;Zhu, Xudong
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.5
    • /
    • pp.579-588
    • /
    • 2015
  • Fungi of the genus Pestalotiopsis have drawn attention for their capability to produce an array of bioactive secondary metabolites that have potential for drug development. Here, we report the determination of a polyketide derivative compound, pestalotiollide B, in the culture of the saprophytic fungus Pestalotiopsis microspora NK17. Structural information acquired by analyses with a set of spectroscopic and chromatographic techniques suggests that pestalotiollide B has the same skeleton as the penicillide derivatives, dibenzodioxocinones, which are inhibitors of cholesterol ester transfer protein (CETP), and as purpactins A and C', inhibitors of acyl-CoA:cholesterol acyltransferase (ACAT). Strain NK17 can make a fairly high yield of pestalotiollide B (i.e., up to 7.22 mg/l) in a constitutive manner in liquid culture. Moreover, we found that a putative histone deacetylase gene, designated as hid1, played a role in the biosynthesis of pestalotiollide B. In the hid1 null mutant, the yield of pestalotiollide B increased approximately 2-fold to 15.90 mg/l. In contrast, deletion of gene hid1 led to a dramatic decrease of conidia production of the fungus. These results suggest that hid1 is a modulator, concerting secondary metabolism and development such as conidiation in P. microspora. Our work may help with the investigation into the biosynthesis of pestalotiollide B and the development for new CETP and ACAT inhibitors.

F1064m: New Inhibitor of Cholesteryl Ester Transfer Protein (CETP), Isolated from Gliocladium virens F1064

  • Kwon, Byoung-Mog;Cho, Joung-Suk;Jeong, Tae-Sook;Kim, Sung-Uk;Son, Kwang-Hee;Kim, Young-Kook;Nam, Ji-Youn;Han, Kyu-Hoon;Bok, Song-Hae
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1995.04a
    • /
    • pp.65-65
    • /
    • 1995
  • Cholesteryl Ester Transfer Protein(CETP), a hydrophobic glycoprotein with molecular mass 74KDa, is a lipid transfer protein found in plasma which mediates the transfer of cholesterol ester and triglyceride between high-density lipoprotein (HDL) and other lipoproteins, therefore, it might influence HDL levels. The lipoprotein profile associated with human CETP deficiency (that are two Japanese families, high HDL and low LDL) has low atherogenic potential, raising the possibility that CETP inhibitors can be used as antiatherosclerotic drugs.

  • PDF