• Title/Summary/Keyword: inhibitor cocktail

Search Result 7, Processing Time 0.019 seconds

Saccharomyces cerevisiae Strain Improvement Using Selection, Mutation, and Adaptation for the Resistance to Lignocellulose-Derived Fermentation Inhibitor for Ethanol Production

  • Jang, Youri;Lim, Younghoon;Kim, Keun
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.5
    • /
    • pp.667-674
    • /
    • 2014
  • Twenty-five Saccharomyces cerevisiae strains were screened for the highest sugar tolerance, ethanol-tolerance, ethanol production, and inhibitor resistance, and S. cerevisiae KL5 was selected as the best strain. Inhibitor cocktail (100%) was composed of 75 mM formic acid, 75 mM acetic acid, 30 mM furfural, 30 mM hydroxymethyl furfural (HMF), and 2.7 mM vanillin. The cells of strain KL5 were treated with ${\gamma}$-irradiation, and among the survivals, KL5-G2 with improved inhibitor resistance and the highest ethanol yield in the presence of inhibitor cocktail was selected. The KL5-G2 strain was adapted to inhibitor cocktail by sequential transfer of cultures to a minimal YNB medium containing increasing concentrations of inhibitor cocktail. After 10 times of adaptation, most of the isolated colonies could grow in YNB with 80% inhibitor cocktail, whereas the parental KL5 strain could not grow at all. Among the various adapted strains, the best strain (KL5-G2-A9) producing the highest ethanol yield in the presence of inhibitor cocktail was selected. In a complex YP medium containing 60% inhibitor cocktail and 5% glucose, the theoretical yield and productivity (at 48 h) of KL5-G2-A9 were 81.3% and 0.304 g/l/h, respectively, whereas those of KL5 were 20.8% and 0.072 g/l/h, respectively. KL5-G2-A9 reduced the concentrations of HMF, furfural, and vanillin in the medium in much faster rates than KL5.

Selection of Inhibitor-resistance Yeast and its Application to Bioethanol Production in the Hydrolysate of Rape Stem (유채대 가수분해물에서 inhibitor 저항성 효모선별과 이를 이용한 bioethanol 생산)

  • Yeon, Ji-Hyeon;Kim, Hye-Ji;Oh, Sung-Ho;Lee, Hyeon-Yong;Jung, Kyung-Hwan
    • KSBB Journal
    • /
    • v.25 no.4
    • /
    • pp.401-407
    • /
    • 2010
  • We established a strategy for bioethanol production using the hydrolysate of rape stem, in which the inhibitor cocktail was added intentionally. The final goal of this study was to circumvent the detoxification process when the hydrolysate of lignocelluloisic biomass contained the toxic substances in high concentration. When six yeast strains were examined, Sacchromyces cerevisiae ATCC 96581 and Pichia stipitis CBS 7126 were relatively resistant to inhibitor cocktail. Then, using strains 96581 and 7126, we designed a process strategy for bioethanol production, assuming that the concentration of toxic substance in the hydrolysate of rape stem was remarkably high. When strains 96581 and 7126 were inoculated simultaneously, it was observed that strain 7126 produced bioethanol as well as strain 96581, although the concentration of inhibitor cocktail was 18.2% (v/v). Finally, throughout this co-cultivation of strains 96581 and 7126, bioethanol was produced about 6.0 (g/L), and bioethanol yield reached at 0.4 (g-bioethanol/g-reducing sugar) (78.4% of theoretical value).

A Comparison of the In Vitro Inhibitory Effects of Thelephoric Acid and SKF-525A on Human Cytochrome P450 Activity

  • Song, Min;Do, HyunHee;Kwon, Oh Kwang;Yang, Eun-Ju;Bae, Jong-Sup;Jeong, Tae Cheon;Song, Kyung-Sik;Lee, Sangkyu
    • Biomolecules & Therapeutics
    • /
    • v.22 no.2
    • /
    • pp.155-160
    • /
    • 2014
  • Thelephoric acid is an antioxidant produced by the hydrolysis of polyozellin, which is isolated from Polyozellus multiplex. In the present study, the inhibitory effects of polyozellin and thelephoric acid on 9 cytochrome P450 (CYP) family members (CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and CYP3A4) were examined in pooled human liver microsomes (HLMs) using a cocktail probe assay. Polyozellin exhibited weak inhibitory effects on the activities of all 9 CYPs examined, whereas thelephoric acid exhibited dose- and time-dependent inhibition of all 9 CYP isoforms ($IC_{50}$ values, $3.2-33.7{\mu}M$). Dixon plots of CYP inhibition indicated that thelephoric acid was a competitive inhibitor of CYP1A2 and CYP3A4. In contrast, thelephoric acid was a noncompetitive inhibitor of CYP2D6. Our findings indicate that thelephoric acid may be a novel, non-specific CYP inhibitor, suggesting that it could replace SKF-525A in inhibitory studies designed to investigate the effects of CYP enzymes on the metabolism of given compounds.

Degranulation of human eosinophils induced by Paragonimus westermani-secreted protease

  • SHIN Myeong Heon;CHUNG Young-Bae;KITA Hirohito
    • Parasites, Hosts and Diseases
    • /
    • v.43 no.1 s.133
    • /
    • pp.33-37
    • /
    • 2005
  • Eosinophil degranulation is considered to be a key effector function for the killing of helminthic worms and tissue inflammation at worm-infected lesion sites. However, relatively little data are available with regard to eosinophil response after stimulation with worm-secreted products which contain a large quantity of cysteine proteases. In this study, we attempted to determine whether the degranulation of human eosinophils could be induced by the direct stimulation of the excretory-secretory products (ESP) of Paragonimus westermani, which causes pulmonary paragonimiasis in human beings. Incubation of eosinophils for 3 hr with Paragonimus-secreted products resulted in marked degranulation, as evidenced by the release of eosinophil-derived neurotoxin (EON) in the culture supernatants. Moreover, superoxide anion was produced by eosinophils after stimulation of the ESP. The ESP-induced EDN release was found to be significantly inhibited when the ESP was pretreated with protease inhibitor cocktail or the cysteine protease inhibitor, E-64. These findings suggest that human eosinophils become degranulated in response to P. westermani-secreted proteases, which may contribute to in vivo tissue inflammation around the worms.

Superoxide Anion Production by Human Neutrophils Activated by Trichomonas vaginalis

  • Song, Hyun-Ouk;Ryu, Jae-Sook
    • Parasites, Hosts and Diseases
    • /
    • v.51 no.4
    • /
    • pp.479-484
    • /
    • 2013
  • Neutrophils are the predominant inflammatory cells found in vaginal discharges of patients infected with Trichomonas vaginalis. In this study, we examined superoxide anion ($O^{\cdot}_{2^-}$) production by neutrophils activated by T. vaginalis. Human neutrophils produced superoxide anions when stimulated with either a lysate of T. vaginalis, its membrane component (MC), or excretory-secretory product (ESP). To assess the role of trichomonad protease in production of superoxide anions by neutrophils, T. vaginalis lysate, ESP, and MC were each pretreated with a protease inhibitor cocktail before incubation with neutrophils. Superoxide anion production was significantly decreased by this treatment. Trichomonad growth was inhibited by preincubation with supernatants of neutrophils incubated for 3 hr with T. vaginalis lysate. Furthermore, myeloperoxidase (MPO) production by neutrophils was stimulated by live trichomonads. These results indicate that the production of superoxide anions and MPO by neutrophils stimulated with T. vaginalis may be a part of defense mechanisms of neutrophils in trichomoniasis.

Correlation of expression and activity of matrix metalloproteinase-9 and -2 in human gingival cells of periodontitis patients

  • Kim, Kyung-A;Chung, Soo-Bong;Hawng, Eun-Young;Noh, Seung-Hyun;Song, Kwon-Ho;Kim, Hanna-Hyun;Kim, Cheorl-Ho;Park, Young-Guk
    • Journal of Periodontal and Implant Science
    • /
    • v.43 no.1
    • /
    • pp.24-29
    • /
    • 2013
  • Purpose: Matrix metalloproteinases (MMPs) are capable of degrading extracellular matrix, and they are inducible enzymes depending on an inflammatory environment such as periodontitis and bacterial infection in periodontal tissue. Gingival inflammation has been postulated to be correlated with the production of MMP-2 and MMP-9. The objective of this study was to quantify the expression and activity of MMP-9 and -2, and to determine the correlation between activity and expression of these MMPs in human gingival tissues with periodontitis. Methods: The gingival tissues of 13 patients were homogenized in $500{\mu}L$ of phosphate buffered saline with a protease inhibitor cocktail. The expression and activity of MMP-2 and -9 were measured by enzyme-linked immunosorbent assay and Western blot analysis, and quantified by a densitometer. For the correlation line, statistical analysis was performed using the Systat software package. Results: MMP-9 was highly expressed in all gingival tissue samples, whereas MMP-2 was underexpressed compared with MMP-9. MMP-9 activity increased together with the MMP-9 expression level, with a positive correlation (r=0.793, P=0.01). The correlation was not observed in MMP-2. Conclusions: The expression of MMP-2 and -9 might contribute to periodontal physiological and pathological processes, and the degree of MMP-9 expression and activity are predictive indicators relevant to the progression of periodontitis.

$H_2$ Receptor-Mediated Relaxation of Circular Smooth Muscle in Human Gastric Corpus: the Role of Nitric Oxide (NO)

  • Lee, Sang Eok;Kim, Dae Hoon;Kim, Young Chul;Han, Joung-Ho;Choi, Woong;Kim, Chan Hyung;Jeong, Hye Won;Park, Seon-Mee;Yun, Sei Jin;Choi, Song-Yi;Sung, Rohyun;Kim, Young Ho;Yoo, Ra Young;Park, Hee Sun;Kim, Heon;Song, Young-Jin;Xu, Wen-Xie;Yun, Hyo-Yung;Lee, Sang Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.5
    • /
    • pp.425-430
    • /
    • 2014
  • This study was designed to examine the effects of histamine on gastric motility and its specific receptor in the circular smooth muscle of the human gastric corpus. Histamine mainly produced tonic relaxation in a concentration-dependent and reversible manner, although histamine enhanced contractility in a minor portion of tissues tested. Histamine-induced tonic relaxation was nerve-insensitive because pretreatment with nerve blockers cocktail (NBC) did not inhibit relaxation. Additionally, $K^+$ channel blockers, such as tetraethylammonium (TEA), apamin (APA), and glibenclamide (Glib), had no effect. However, $N^G$-nitro-L-arginine methyl ester (L-NAME) and 1H-(1,2,4)oxadiazolo (4,3-A) quinoxalin-1-one (ODQ), an inhibitor of soluble guanylate cyclase (sGC), did inhibit histamine-induced tonic relaxation. In particular, histamine-induced tonic relaxation was converted to tonic contraction by pretreatment with L-NAME. Ranitidine, the $H_2$ receptor blocker, inhibited histamine-induced tonic relaxation. These findings suggest that histamine produced relaxation in circular smooth muscle of human gastric smooth muscle through $H_2$ receptor and NO/sGC pathways.