Browse > Article
http://dx.doi.org/10.4014/jmb.1402.02040

Saccharomyces cerevisiae Strain Improvement Using Selection, Mutation, and Adaptation for the Resistance to Lignocellulose-Derived Fermentation Inhibitor for Ethanol Production  

Jang, Youri (Department of Bioscience and Biotechnology, The University of Suwon)
Lim, Younghoon (Department of Bioscience and Biotechnology, The University of Suwon)
Kim, Keun (Department of Bioscience and Biotechnology, The University of Suwon)
Publication Information
Journal of Microbiology and Biotechnology / v.24, no.5, 2014 , pp. 667-674 More about this Journal
Abstract
Twenty-five Saccharomyces cerevisiae strains were screened for the highest sugar tolerance, ethanol-tolerance, ethanol production, and inhibitor resistance, and S. cerevisiae KL5 was selected as the best strain. Inhibitor cocktail (100%) was composed of 75 mM formic acid, 75 mM acetic acid, 30 mM furfural, 30 mM hydroxymethyl furfural (HMF), and 2.7 mM vanillin. The cells of strain KL5 were treated with ${\gamma}$-irradiation, and among the survivals, KL5-G2 with improved inhibitor resistance and the highest ethanol yield in the presence of inhibitor cocktail was selected. The KL5-G2 strain was adapted to inhibitor cocktail by sequential transfer of cultures to a minimal YNB medium containing increasing concentrations of inhibitor cocktail. After 10 times of adaptation, most of the isolated colonies could grow in YNB with 80% inhibitor cocktail, whereas the parental KL5 strain could not grow at all. Among the various adapted strains, the best strain (KL5-G2-A9) producing the highest ethanol yield in the presence of inhibitor cocktail was selected. In a complex YP medium containing 60% inhibitor cocktail and 5% glucose, the theoretical yield and productivity (at 48 h) of KL5-G2-A9 were 81.3% and 0.304 g/l/h, respectively, whereas those of KL5 were 20.8% and 0.072 g/l/h, respectively. KL5-G2-A9 reduced the concentrations of HMF, furfural, and vanillin in the medium in much faster rates than KL5.
Keywords
Lignocellulose-derived fermentation inhibitor; resistance; adaptation; Saccharomyces cerevisiae; ethanol production;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Thammasittirong SN-R, Thirasaktana T, Thammasittirong A, Srisodsuk M. 2013. Improvement of ethanol production by ethanol-tolerant Saccharomyces cerevisiae UVNR56. Springerplus 2: 583-587.   DOI
2 Verduyn C, Postma E , Scheffers WA, Van Dijken J P. 1992. Effect of benzoic acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration and alcoholic fermentation. Yeast 8: 501-517.   DOI   ScienceOn
3 Xavier AMRB, Correia MF, Pereira SR, Evtuguin DV. 2010. Second-generation bioethanol from eucalypt sulphite spent liquor. Bioresour. Technol. 101: 2755 -2761.
4 Clark TA, Mackie KL. 1984. Fermentation inhibitors in wood hydrolysates derived from softwood Pinus radiata. J. Chem. Technol. Biotechnol. 34B: 101-110.
5 Demeke MM, Dumortier F, Li Y, Broeckx T, Foulquie- Moreno MR, Thevelein JM. 2013. Combining inhibitor tolerance and D-xylose fermentation in industrial Saccharomyces cerevisiae for efficient lignocellulose-based bioethanol production. Biotechnol. Biofuels 6: 120-136.   DOI
6 Diaz De Villegas ME, Villa P, Guerra M, Rodrguez E, Redondo D, Martinez A. 1992. Conversion of furfural into furfuryl alcohol by Saccharomyces cerevisiae. Acta Biotechnol. 12: 351-354.   DOI
7 Russel JB. 1992. Another explanation for the toxicity of fermentation acids at low pH: anion accumulation versus uncoupling. J. Appl. Bacteriol. 73: 363-370.   DOI
8 Srvari Horvath I, Franzen CJ, Taherzadeh MJ, Niklasson C, Liden G. 2003. Effects of furfural on the respiratory metabolism of Saccharomyces cerevisiae in glucose-limited chemostats. Appl. Environ. Microbiol. 69: 4076-4086.   DOI   ScienceOn
9 Sauer U. 2001. Evolutionary engineering of industrially important microbial phenotypes. Adv. Biochem. Eng. 73: 129-169.
10 Slininger PJ, Gorsich SW, Liu ZL. 2009. Culture nutrition and physiology impact the inhibitor tolerance of the yeast Pichia stipitis NRRL Y-7124. Biotechnol. Bioeng. 102: 778-790.   DOI
11 Liu ZL, Moon J, Andersh BJ, Slininger PJ, Weber S. 2008. Multiple gene-mediated NAD(P)H-dependent aldehyde reduction is a mechanism of in situ detoxification of furfural and 5- hydroxymethylfurfural by Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 81: 743-753.   DOI
12 Liu ZL, Slininger PJ, Gorsich SW. 2005. Enhanced biotransformation of furfural and hydroxymethylfurfural by newly developed ethanologenic yeast strains. Appl. Biochem. Biotechnol. 121-124: 451-460.
13 Martin C, Jonsson LJ. 2003. Comparison of the resistance of industrial and laboratory strains of Saccharomyces and Zygosaccharomyces to lignocellulose-derived fermentation inhibitors. Enzyme Microb. Technol. 32: 386-395.   DOI   ScienceOn
14 Martin C, Marcet M, Almazan O, Jonsson LJ. 2007. Adaptation of a recombinant xylose-utilizing Saccharomyces cerevisiae strain to a sugarcane bagasse hydrolysate with high content of fermentation inhibitors. Bioresour. Technol. 98: 1767-1773.   DOI
15 Parawira W, Tekere M. 2011. Biotechnological strategies to overcome inhibitors in lignocelluloses hydrolysates for ethanol production: review. Crit. Rev. Biotechnol. 31: 20-31.   DOI   ScienceOn
16 Metzger JO, Huttermann A. 2009. Sustainable global energy supply based on lignocellulosic biomass from afforestation of degraded areas. Naturwissenschaften. 96: 279-288.   DOI
17 Mussato SI, Roberto IC. 2004. Alternatives for detoxification of diluted-acid lignocellulosic hydrolyzates for use in fermentative processes; a review. Bioresour. Technol. 93: 1-10.   DOI   ScienceOn
18 Pampulha ME, Loureiro-Dias MC. 1989. Combined effect of acetic acid, pH and ethanol on intracellular pH of fermenting yeast. Appl. Microbiol. Biotechnol. 20: 286-293.
19 Larsson S, Quintana-Sainz A, Reimann A, Nilvebrant NO, Jonsson LJ. 2000. Influence of lignocelluloses-derived aromatic compounds on oxygen-limited growth and ethanolic fermentation by Saccharomyces cerevisiae. Appl. Biochem. Biotechnol. 84-86: 617-632.   DOI   ScienceOn
20 Almeida JRM, Karhumaa K, Bengtsson O, Gorwa-Grauslund M-F. 2009. Screening of Saccharomyces cerevisiae strains with respect to anaerobic growth in non-detoxified lignocelluloses hydrolysate. Bioresour. Technol. 100: 3674-3677.   DOI
21 Almeida JRM, Modig T, Petersson A, Hahn-Hagerdal B, Liden G, Gorwa-Grauslund MF. 2007. Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J. Chem. Technol. Biotechnol. 82: 340-349.   DOI   ScienceOn
22 Lee HW, Cho DH, Kim YH, Shin SJ, Kim SB, Han SO, et al. 2011. Tolerance of Saccharomyces cerevisiae K35 to lignocellulosederived inhibitory compounds. Biotechnol. Bioprocess Eng. 16: 755-760.   DOI   ScienceOn
23 Liu ZL. 2011. Molecular mechanisms of yeast tolerance and in situ detoxification of lignocellulose hydrolysates. Appl. Microbiol. Biotechnol. 90: 809-825.   DOI
24 Heipieper HJ, Weber FJ, Sikkema J, Keweloh H, De Bont JAM. 1994. Mechanisms of resistance of whole cells to toxic organic solvents. Trends Biotechnol. 12: 409-415.   DOI   ScienceOn
25 Liu ZL, Moon J. 2009. A novel NADPH-dependent aldehyde reductase gene from Saccharomyces cerevisiae NRRL Y-12632 involved in the detoxification of aldehyde inhibitors derived from lignocellulosic biomass conversion. Gene 446: 1-10.   DOI
26 Favaro L, Basaglia M, Trento A, Van Rensburg E, Garcia- Aparicio M, Van Zyl WH, Casella S. 2013. Exploring grape marc as trove for new thermotolerant and inhibitor-tolerant Saccharomyces cerevisiae strains for second-generation bioethanol production. Biotechnol. Biofuels 6: 168-181.   DOI
27 Heer D, Sauer U. 2008. Identification of furfural as a key toxin in lignocellulosic hydrolysates and evolution of a tolerant yeast strain. Microb. Biotechnol. 6: 497-506.
28 Huang CF, Lin TH, Guo GL, Hwang WS. 2009. Enhanced ethanol production by fermentation of rice straw hydrolysate without detoxification using a newly adapted strain of Pichia stipitis. Bioresour. Technol. 100: 3914-3920.   DOI
29 Klinke HB, Olsson L, Thomsen AB, Ahring BK. 2003. Potential inhibitors from wet oxidation of wheat straw and their effect on ethanol production of Saccharomyces cerevisiae. Biotechnol. Bioeng. 81: 738-747.   DOI   ScienceOn
30 Landaeta R, Aroca G, Acevedo F, Teixeira JA, Mussatto SI. 2013. Adaptation of a flocculent Saccharomyces cerevisiae strain to lignocellulosic inhibitors by cell recycle batch fermentation. Appl. Energy 102: 124-130.   DOI
31 Larsson S, Palmqvist E, Hahn-Hgerdal B, Tengborg C, Stenberg K, Zacchi G, Nilvebrant N-O. 1999. The generation of fermentation inhibitors during dilute acid hydrolysis of softwood. Enzyme Microb. Technol. 24: 151-195.   DOI   ScienceOn
32 Taherzadeh M J, G ustafsson L, N iklasson C , Liden G. 2000. Physiological effects of 5-hydroxymethylfurfural on Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 53: 701-708.   DOI   ScienceOn
33 Palmqvist E, Almeida JS, Hahn-Hagerdal B. 1999. Influence of furfural on anaerobic glycolytic kinetics of Saccharomyces cerevisiae in batch culture. Biotechnol. Bioeng. 62: 447-454.   DOI   ScienceOn