• Title/Summary/Keyword: infrastructure scenario

Search Result 157, Processing Time 0.035 seconds

A Prospect for Supply and Demand of Physical Therapists in Korea Through 2030 (물리치료사 인력의 수급전망과 정책방향)

  • Oh, Youngho
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.6 no.4
    • /
    • pp.149-169
    • /
    • 2018
  • Purpose : This study was to develop a strategy for modeling future workforce projections to serve as a basis for analyzing annual supply of and demand for physical therapists across the South Korea into 2030. Methods : In-and-out movement model was used to project the supply of physical therapists. The demand was projected according to the demand-based method which consists of four-stages such as estimation of the utilization rate of the base year, forecasting of health care utilization of the target years, forecasting of the requirements of clinical physical therapists and non-clinical physical therapists based on the projected physical therapists. Results : Based on the current productivity standards, there will be oversupply of 39,007 to 40,875 physical therapists under the demand scenario of average rate in 2030, undersupply of 44,663 to 49,885 under the demand scenario of logistic model, oversupply of 16,378 to 19,100 under the demand scenario of logarithm, and oversupply of 18,185 to 20,839 under the demand scenario of auto-regressive moving average (ARIMA) model in 2030. Conclusion : The result of this projection suggests that the direction and degree of supply of and demand for physical therapists varied depending on physical therapists productivity and utilization growth scenarios. However, the need for introduction of a professional physical therapist system and the need to provide long-term care rehabilitation services are actively being discussed in entering the aging society. If community rehabilitation programs for rehabilitation of disabled people and the elderly are activated, the demand of physical therapists will increase, especially for elderly people. Therefore, healthcare policy should focus on establishing rehabilitation service infrastructure suitable for an aging society, providing high-quality physical therapy services, and effective utilization of physical therapists.

Evaluation of Runoff Prediction from Managed Golf Course using WEPP Watershed Model (WEPP 모형을 이용한 골프장 잔디 관리에 따른 유출특성 모의)

  • Choi, Jaewan;Shin, Min Hwan;Ryu, Ji Chul;Kum, Donghyuk;Kang, Hyunwoo;Cheon, Se Uk;Shin, Dong Seok;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.1
    • /
    • pp.1-9
    • /
    • 2012
  • It has been known that Golf course could impose negative impacts on water-ecosystem if pollutant-laden runoff is not treated well. It is important to control non-point source and re-use treated wastewater from the golf course to secure water quality of receiving waterbodies. At golf courses, the rainfall-runoff is affected by various practices to manage grasses. In many hydrological modelings, especially in simple rainfall-runoff modeling, effects on runoff of plant growth and cutting are not considered. In the study, the water erosion prediction project (WEPP), capable of simulating plant growth and various management, was evaluated for its runoff prediction from golf course under grass cutting and irrigation. The %Difference, $R^2$ and the NSE for runoff comparisons were 1.15%, 0.93 and 0.92 for calibration, and 18.12%, 0.82 and 0.88 for validation period, respectively. In grass cutting scenario, grass height was managed to be 18~25 mm. The estimated runoff was decreased by 27%. The difference in estimated total runoff was 11.8% depending on irrigation. As shown in this study, if grass management and irrigation are well-controlled, water quality of downstream areas could be obtained.

Investigation of aerodynamic behaviour of a high-speed train on different railway infrastructure scenarios under crosswind

  • Jiqiang, Niu;Yingchao, Zhang;Zhengwei, Chen;Rui, Li;Huadong, Yao
    • Wind and Structures
    • /
    • v.35 no.6
    • /
    • pp.405-418
    • /
    • 2022
  • The aerodynamic behaviour of a CRH high-speed train under three infrastructure scenarios (flat ground, embankment, and viaduct) in the presence of a crosswind was simulated using a 1/8th scaled train model with three cars and the IDDES framework. The time-averaged and instantaneous flow field around the model were examined. The employed numerical algorithm was verified through a wind tunnel test, and the grid and timestep resolution analyses were conducted to ensure the reliability of the data. It was noted that the flow around the rail line was different under different infrastructure scenarios, especially in the case of the embankment, which degraded the aerodynamic performance of the train under the crosswind. The flow around the train on the flat ground and viaduct was different, although the aerodynamic performance of the train was similar in both cases. Moreover, the viaduct accidents were noted to have the most critical consequences, thereby requiring the most attention. The aerodynamic performance of the train on the windward track of the embankment under the crosswind was worse than that of the train on the leeward track. But for the other two infrastructure scenarios, the aerodynamic performance of the train on the windward track is relatively dangerous, which is mainly caused by the head car. These observations suggest that the aerodynamic behaviour of the train on an embankment under a crosswind must be carefully considered and that certain wind protection measures must be adopted around rail lines in windy areas.

Computer modelling of fire consequences on road critical infrastructure - tunnels

  • Pribyl, Pavel;Pribyl, Ondrej;Michek, Jan
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.3
    • /
    • pp.363-377
    • /
    • 2018
  • The proper functioning of critical points on transport infrastructure is decisive for the entire network. Tunnels and bridges certainly belong to the critical points of the surface transport network, both road and rail. Risk management should be a holistic and dynamic process throughout the entire life cycle. However, the level of risk is usually determined only during the design stage mainly due to the fact that it is a time-consuming and costly process. This paper presents a simplified quantitative risk analysis method that can be used any time during the decades of a tunnel's lifetime and can estimate the changing risks on a continuous basis and thus uncover hidden safety threats. The presented method is a decision support system for tunnel managers designed to preserve or even increase tunnel safety. The CAPITA method is a deterministic scenario-oriented risk analysis approach for assessment of mortality risks in road tunnels in case of the most dangerous situation - a fire. It is implemented through an advanced risk analysis CAPITA SW. Both, the method as well as the resulting software were developed by the authors' team. Unlike existing analyzes requiring specialized microsimulation tools for traffic flow, smoke propagation and evacuation modeling, the CAPITA contains comprehensive database with the results of thousands of simulations performed in advance for various combinations of variables. This approach significantly simplifies the overall complexity and thus enhances the usability of the resulting risk analysis. Additionally, it provides the decision makers with holistic view by providing not only on the expected risk but also on the risk's sensitivity to different variables. This allows the tunnel manager or another decision maker to estimate the primary change of risk whenever traffic conditions in the tunnel change and to see the dependencies to particular input variables.

Future Inflow Simulation Considering the Uncertainties of TFN Model and GCMs on Chungju Dam Basin (TFN 모형과 GCM의 불확실성을 고려한 충주댐 유역의 미래 유입량 모의)

  • Park, Jiyeon;Kwon, Ji-Hye;Kim, Taereem;Heo, Jun-Haeng
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.2
    • /
    • pp.135-143
    • /
    • 2014
  • In this study, Chungju inflow was simulated for climate change considering the uncertainties of GCMs and a stochastic model. TFN (Transfer Function Noise) model and 4 different GCMs (CNRM, CSIRO, CONS, UKMO) based on IPCC AR4 A2 scenario were used. In order to evaluate uncertainty of TFN model, 100 cases of noises are applied to the TFN model. Thus, 400 cases of inflow results are simulated. Future inflows according to the GCMs show different rates of changes for the future 3 periods relative to the past 30-years reference period. As the results, the summer inflow shows increasing trend and the spring inflow shows decreasing trend based on AR4 A2 scenario.

The Proposal of Evaluation Method for Local Government Infrastructure Vulnerability Relating to Climate Change Driven Flood (기후변화에 따른 홍수에 대한 지자체 기반시설 취약성 평가 방법 제시)

  • Han, Woo Suk;Sim, Ou Bae;Lee, Byoung Jae;Yoo, Jae Hwan
    • Journal of Climate Change Research
    • /
    • v.3 no.1
    • /
    • pp.25-37
    • /
    • 2012
  • This research proposes the direction for the assessment of local government infrastructure vulnerabilities relating to climate change driven flood and analyzes the assessment result. In this research, the local government infrastructures are evaluated by three indices such as exposure, infrastructure sensitivity, adaptive capacity and each index is calculated by selected alternative variable. Climate change scenario(A1B) developed on National Institute of Environmental Research is used to calculate present and future(2020, 2050, 2100s) exposure. As the result of infrastructure vulnerability assessment on present, the infrastructures in Seoul, Northern Gyeonggi-do, Gangwon-do, coastal area of Gyeongsangnam-do are vulnerable to flooding. For future, although the spatial pattern of flooding vulnerable infrastructure are similar, the flooding vulnerabilities of infrastructure in Gyeonggido and Ganwon-do would be increased as close to 2100s. It is expected that this research can be utilized as the preliminary analysis for climate change adaptation in local government infrastructure because this research propose the method for the assessment of local government infrastructure vulnerability relating to climate change driven flood and the result such as a trend of infrastructure vulnerability to flooding and the level of contribution of each index and alternative variable.

Effect of Random Node Distribution on the Throughput in Infrastructure-Supported Erasure Networks (인프라구조 도움을 받는 소거 네트워크에서 용량에 대한 랜덤 노드 분포의 효과)

  • Shin, Won-Yong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.5
    • /
    • pp.911-916
    • /
    • 2016
  • The nearest-neighbor multihop routing with/without infrastructure support is known to achieve the optimal capacity scaling in a large packet-erasure network in which multiple wireless nodes and relay stations are regularly placed and packets are erased with a certain probability. In this paper, a throughput scaling law is shown for an infrastructure-supported erasure network where wireless nodes are randomly distributed, which is a more feasible scenario. We use an exponential decay model to suitably model an erasure probability. To achieve high throughput in hybrid random erasure networks, the multihop routing via highway using the percolation theory is proposed and the corresponding throughput scaling is derived. As a main result, the proposed percolation highway based routing scheme achieves the same throughput scaling as the nearest-neighbor multihop case in hybrid regular erasure networks. That is, it is shown that no performance loss occurs even when nodes are randomly distributed.

A Study on the Performance Evaluation of C-ARS(Cooperative Automated Roadway System) in Infrastructure to Vehicle (I2V) Communication Based Service Scenario (인프라-차량(I2V) 통신 기반 서비스 시나리오에 따른 자율협력주행 도로시스템 성능평가 방안 연구)

  • Bae, Myoung Hwan;Kwon, Oh Yong;Kim, Jung Min;Jeong, Hong Jong
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.4
    • /
    • pp.112-123
    • /
    • 2018
  • The C-ARS(Cooperative Automated Roadway System) refers to a road infrastructure system that links automated vehicles with road infrastructure and communicates with each other via V2X communication to support automated vehicles. The purpose of this study is to suggest a performance evaluation method of C-ARS service. This study exemplifies the 'Work zone information service' among I2V service that provide information to automated vehicles in road infrastructure. First, we define the requirements and service scope needed to check the use case analysis and service performance of the service, and propose an evaluation system for performance evaluation of these services. In addition, the evaluation system was used to verify the feasibility of evaluation through the field test of 'Work zone information service'.

Impact of time and frequency domain ground motion modification on the response of a SDOF system

  • Carlson, Clinton P.;Zekkos, Dimitrios;McCormick, Jason P.
    • Earthquakes and Structures
    • /
    • v.7 no.6
    • /
    • pp.1283-1301
    • /
    • 2014
  • Ground motion modification is extensively used in seismic design of civil infrastructure, especially where few or no recorded ground motions representative of the design scenario are available. A site in Los Angeles, California is used as a study site and 28 ground motions consistent with the design earthquake scenario are selected. The suite of 28 ground motions is scaled and modified in the time domain (TD) and frequency domain (FD) before being used as input to a bilinear SDOF system. The median structural responses to the suites of scaled, TD-modified, and FD-modified motions, along with ratios of he modified-to-scaled responses, are investigated for SDOF systems with different periods, strength ratios, and post-yield stiffness ratios. Overall, little difference (less than 20%) is observed in the peak structural accelerations, velocities, and displacements; displacement ductility; and absolute accelerations caused by the TD-modified and FD-modified motions when compared to the responses caused by the scaled motions. The energy absorbed by the system when the modified motions are used as input is more than 20% greater than when scaled motions are used as input. The observed trends in the structural response are predominantly the result of changes in the ground motion characteristics caused by modification.

Analysis of Prediction Supply of Fisheries Fuel in Korea (어업용 면세유류 사용량 예측에 관한 연구)

  • Lee, Kwang-Nam;Jung, Jin-Ho
    • The Journal of Fisheries Business Administration
    • /
    • v.43 no.1
    • /
    • pp.49-61
    • /
    • 2012
  • The tax exemption oil for fishery is expecting that the use of oil is gradually decreasing according to the environmental change such as reductions of vessel force caused by an upswing of oil prices and reduction of fishing vessels in the recent. Such reductions in the tax exemption oil amount have a negative effect on the tax exemption oil business and the fishery infrastructure. This paper studied to provide the basic data for a stable supply thorough the facts affected in the use of the tax exemption oil and the prediction for the use of the tax exemption oil in future. This analysis drew a estimation method by Cochrane-Orcutt repeated proceeding model with an object main factors such as a price of tax exemption oil and vessel force and international oil prices and exchange rates. And this analysis also drew the use of a tax exemption oil by 2000 after set up the scenario using an estimation method drawn. For the use of the estimated tax exemption oil analyzed to decrease within about 81 percent of the present(2020), It should be considering a stability plan for tax exemption oil for fishery in future.