• 제목/요약/키워드: infrared sensors

검색결과 433건 처리시간 0.022초

분산 반사경 기반 패브리-페로 필터를 이용한 비분산적외선 CO2 센서의 감지 특성 (Sensing characteristics of a non-dispersive infrared CO2 sensor using a Fabry-Perot filter based on distributed Bragg reflector)

  • 도남곤;이준엽;정동건;공성호;정대웅
    • 센서학회지
    • /
    • 제30권6호
    • /
    • pp.446-450
    • /
    • 2021
  • Non-dispersive infrared (NDIR) gas sensors typically use an optical filter that transmits a discriminating 4.26 ㎛ wavelength band to measure carbon dioxide (CO2), as CO2 absorbs 4.26 ㎛ infrared. The filter performance depends on the transmittance and full width at half maximum (FWHM). This paper presents the fabrication, sensitivity, and selectivity characteristics of a distributed Bragg reflector (DBR)-based Fabry-Perot filter with a simple structure for CO2 detection. Each Ge and SiO2 films were prepared using the RF magnetron sputtering technique. The transmittance characteristics were measured using Fourier-transform infrared spectroscopy (FT-IR). The fabricated filter had a peak transmittance of 59.1% at 4.26 ㎛ and a FWHM of 158 nm. In addition, sensitivity and selectivity experiments were conducted by mounting the sapphire substrate and the fabricated filter on an NDIR CO2 sensor measurement system. When measuring the sensitivity, the concentration of CO2 was observed in the range of 0-10000 ppm, and the selectivity was measured for environmental gases of 1000 ppm. The fabricated filter showed lower sensitivity to CO2 but showed higher selectivity with other gases.

High-sensitivity NIR Sensing with Stacked Photodiode Architecture

  • Hyunjoon Sung;Yunkyung Kim
    • Current Optics and Photonics
    • /
    • 제7권2호
    • /
    • pp.200-206
    • /
    • 2023
  • Near-infrared (NIR) sensing technology using CMOS image sensors is used in many applications, including automobiles, biological inspection, surveillance, and mobile devices. An intuitive way to improve NIR sensitivity is to thicken the light absorption layer (silicon). However, thickened silicon lacks NIR sensitivity and has other disadvantages, such as diminished optical performance (e.g. crosstalk) and difficulty in processing. In this paper, a pixel structure for NIR sensing using a stacked CMOS image sensor is introduced. There are two photodetection layers, a conventional layer and a bottom photodiode, in the stacked CMOS image sensor. The bottom photodiode is used as the NIR absorption layer. Therefore, the suggested pixel structure does not change the thickness of the conventional photodiode. To verify the suggested pixel structure, sensitivity was simulated using an optical simulator. As a result, the sensitivity was improved by a maximum of 130% and 160% at wavelengths of 850 nm and 940 nm, respectively, with a pixel size of 1.2 ㎛. Therefore, the proposed pixel structure is useful for NIR sensing without thickening the silicon.

Fuzzy Distance Estimation for a Fish Robot

  • Shin, Daejung;Na, Seung-You;Kim, Jin-Young
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제5권4호
    • /
    • pp.316-321
    • /
    • 2005
  • We designed and implemented fish robots for various purposes such as autonomous navigation, maneuverability control, posture balancing and improvement of quick turns in a tank of 120 X 120 X 180cm size. Typically, fish robots have 30-50 X 15-25 X 10-20cm dimensions; length, width and height, respectively. It is essential to have the ability of quick and smooth turning to avoid collision with obstacles or walls of the water pool at a close distance. Infrared distance sensors are used to detect obstacles, magneto-resistive sensors are used to read direction information, and a two-axis accelerometer is mounted to compensate output of direction sensors. Because of the swing action of its head due to the tail fin movement, the outputs of an infrared distance sensor contain a huge amount of noise around true distances. With the information from accelerometers and e-compass, much improved distance data can be obtained by fuzzy logic based estimation. Successful swimming and smooth turns without collision demonstrated the effectiveness of the distance estimation.

군 로봇의 장소 분류 정확도 향상을 위한 적외선 이미지 데이터 결합 학습 방법 연구 (A Study on the Training Methodology of Combining Infrared Image Data for Improving Place Classification Accuracy of Military Robots)

  • 최동규;도승원;이창은
    • 로봇학회논문지
    • /
    • 제18권3호
    • /
    • pp.293-298
    • /
    • 2023
  • The military is facing a continuous decrease in personnel, and in order to cope with potential accidents and challenges in operations, efforts are being made to reduce the direct involvement of personnel by utilizing the latest technologies. Recently, the use of various sensors related to Manned-Unmanned Teaming and artificial intelligence technologies has gained attention, emphasizing the need for flexible utilization methods. In this paper, we propose four dataset construction methods that can be used for effective training of robots that can be deployed in military operations, utilizing not only RGB image data but also data acquired from IR image sensors. Since there is no publicly available dataset that combines RGB and IR image data, we directly acquired the dataset within buildings. The input values were constructed by combining RGB and IR image sensor data, taking into account the field of view, resolution, and channel values of both sensors. We compared the proposed method with conventional RGB image data classification training using the same learning model. By employing the proposed image data fusion method, we observed improved stability in training loss and approximately 3% higher accuracy.

Sensor Data Fusion for Navigation of Mobile Robot With Collision Avoidance and Trap Recovery

  • Jeon, Young-Su;Ahn, Byeong-Kyu;Kuc, Tae-Yong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.2461-2466
    • /
    • 2003
  • This paper presents a simple sensor fusion algorithm using neural network for navigation of mobile robots with obstacle avoidance and trap recovery. The multiple sensors input sensor data to the input layer of neural network activating the input nodes. The multiple sensors used include optical encoders, ultrasonic sensors, infrared sensors, a magnetic compass sensor, and GPS sensors. The proposed sensor fusion algorithm is combined with the VFH(Vector Field Histogram) algorithm for obstacle avoidance and AGPM(Adaptive Goal Perturbation Method) which sets adaptive virtual goals to escape trap situations. The experiment results show that the proposed low-level fusion algorithm is effective for real-time navigation of mobile robot.

  • PDF

적외선을 사용한 사용자 추종 이동로봇 (An Indoor User-Tracking Mobile Robot Based on Infrared Signal Detection)

  • 권순태;박상홍;주문갑
    • 대한임베디드공학회논문지
    • /
    • 제7권1호
    • /
    • pp.25-31
    • /
    • 2012
  • We propose a method for an indoor mobile robot to track user with infrared transmitter. Several infrared receivers attached around by the mobile robot enable the robot to determine the moving direction by comparing the received signal patterns. The cost of the proposed system is not only cheaper than ultrasonic system, image signal processing, RFID, and RSSI method, but also robust against environment change because any complex algorithm is not necessary. In the mobile robot, ultrasonic sensors are equipped to avoid obstacles located in the moving direction, and a simple algorithm is embedded to avoid the case of poor signal reception.

이족보행로봇의 비평탄지형 보행 및 자세 안정화 알고리즘 (Walking and Stabilization Algorithm of Biped Robot on the Uneven Ground)

  • 김용태;노수희;이희진
    • 한국지능시스템학회논문지
    • /
    • 제15권1호
    • /
    • pp.59-64
    • /
    • 2005
  • 이족보행로봇을 실생활에 적용하기 위해서는 비평탄지형에서의 안정적인 보행 및 자세 안정화가 반드시 필요하다. 본 논문에서는 이족보행로봇의 비평탄지형 보행알고리즘과 외력에 대한 자세안정화 알고리즘을 제안하였다. 먼저 다양한 형태의 장애물, 계단, 경사면의 비평탄지형에서 안정적 보행이 가능한 이족보행로봇의 기구부 및 원격제어 가능한 제어시스템 설계에 대하여 설명하고, 이러한 비평탄지형에서 발에 부착된 적외선센서 및 FSR센서, 머리에 장착된 카메라를 사용한 안정된 지능보행 및 원격제어 알고리즘을 제안하였다. 또한 발바닥에 장착된 FSR센서를 사용하여 외부에서 들어오는 외력에 대처하는 자세안정화 알고리즘도 제안하였다. 제안된 비평탄지형 보행 및 자세안정화 알고리즘, 원격제어기법은 실제 제작된 이족보행로봇을 다양한 장애물을 포함한 환경에서 실험하여 성능을 검증하였다.

하나의 구형바퀴를 가지는 새로운 전 방향 이동로보트의 개발 (Development of a new omnidirectional robot with one spherical wheel)

  • 최병준;이연정
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.1605-1608
    • /
    • 1997
  • In this paper, a new onmidirectional robot with one spherical wheel is porposed. The peculiar structure of the proposed mobile robot makes it possible not only to move sideways but to be easy to implement. The wheel is derived by two stepping motors and equipped with 8-infrared sensors. To prove the validity of the proposed robot, the experiment of going through a way is performed.

  • PDF

스테레오 적외선 조명 및 단일카메라를 이용한 3차원 환경인지 (3D Environment Perception using Stereo Infrared Light Sources and a Camera)

  • 이수용;송재복
    • 제어로봇시스템학회논문지
    • /
    • 제15권5호
    • /
    • pp.519-524
    • /
    • 2009
  • This paper describes a new sensor system for 3D environment perception using stereo structured infrared light sources and a camera. Environment and obstacle sensing is the key issue for mobile robot localization and navigation. Laser scanners and infrared scanners cover $180^{\circ}$ and are accurate but too expensive. Those sensors use rotating light beams so that the range measurements are constrained on a plane. 3D measurements are much more useful in many ways for obstacle detection, map building and localization. Stereo vision is very common way of getting the depth information of 3D environment. However, it requires that the correspondence should be clearly identified and it also heavily depends on the light condition of the environment. Instead of using stereo camera, monocular camera and two projected infrared light sources are used in order to reduce the effects of the ambient light while getting 3D depth map. Modeling of the projected light pattern enabled precise estimation of the range. Two successive captures of the image with left and right infrared light projection provide several benefits, which include wider area of depth measurement, higher spatial resolution and the visibility perception.

IR Cut-Off Filter가 차단하지 못한 미량의 적외선이 디지털화상에 미치는 영향 분석 (The analysis of the Effect the Minute Quantities of Infrared Rays that Were not Filtered by IR Cut-Off Filter has on Digital Images)

  • 이용환;박세원;홍정의
    • 한국콘텐츠학회논문지
    • /
    • 제11권5호
    • /
    • pp.205-215
    • /
    • 2011
  • 분광특성의 차이로 필름은 자외선에 민감한데 반해 디지털 카메라의 센서는 적외선에 굉장히 민감하다. 이에 따라 CCD 또는 CMOS를 사용하는 모든 디지털 카메라에는 IR Cut-Off Filter가 센서전면에 장착되어 있다. 이상적으로 100% 적외선을 차단하여야 하지만 실험 결과 완전히 적외선을 차단하지 못하고 있었으며, 각 카메라마다 적외선 투과량 또한 달랐다. 따라서 본 연구는 디지털 카메라에 장착되어 있는 IR Cut-Off Filter의 기계적 특성에 의해 투과되는 미량의 적외선이 디지털 화상이미지에 끼치는 영향을 분석하는 데 그 목적이 있다. UV필터를 장착한 상태(적외선 투과상태)와 UV-IR필터를 장착한 상태(적외선미투과상태)를 비교분석한 결과, 잡음(Noise)과 색 재현력 평가에서는 그 차이가 미세하거나 거의 동등한 수준이지만, 동적 폭(Dynamic Range)과 해상도에는 IR Cut-Off Filter를 통해 투과되는 미량의 적외선이 어느 정도 영향이 있음을 확인할 수 있었다.