• Title/Summary/Keyword: infrared sensors

Search Result 433, Processing Time 0.024 seconds

Sensing characteristics of a non-dispersive infrared CO2 sensor using a Fabry-Perot filter based on distributed Bragg reflector (분산 반사경 기반 패브리-페로 필터를 이용한 비분산적외선 CO2 센서의 감지 특성)

  • Do, Nam Gon;Lee, Junyeop;Jung, Dong Geon;Kong, Seong Ho;Jung, Daewoong
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.6
    • /
    • pp.446-450
    • /
    • 2021
  • Non-dispersive infrared (NDIR) gas sensors typically use an optical filter that transmits a discriminating 4.26 ㎛ wavelength band to measure carbon dioxide (CO2), as CO2 absorbs 4.26 ㎛ infrared. The filter performance depends on the transmittance and full width at half maximum (FWHM). This paper presents the fabrication, sensitivity, and selectivity characteristics of a distributed Bragg reflector (DBR)-based Fabry-Perot filter with a simple structure for CO2 detection. Each Ge and SiO2 films were prepared using the RF magnetron sputtering technique. The transmittance characteristics were measured using Fourier-transform infrared spectroscopy (FT-IR). The fabricated filter had a peak transmittance of 59.1% at 4.26 ㎛ and a FWHM of 158 nm. In addition, sensitivity and selectivity experiments were conducted by mounting the sapphire substrate and the fabricated filter on an NDIR CO2 sensor measurement system. When measuring the sensitivity, the concentration of CO2 was observed in the range of 0-10000 ppm, and the selectivity was measured for environmental gases of 1000 ppm. The fabricated filter showed lower sensitivity to CO2 but showed higher selectivity with other gases.

High-sensitivity NIR Sensing with Stacked Photodiode Architecture

  • Hyunjoon Sung;Yunkyung Kim
    • Current Optics and Photonics
    • /
    • v.7 no.2
    • /
    • pp.200-206
    • /
    • 2023
  • Near-infrared (NIR) sensing technology using CMOS image sensors is used in many applications, including automobiles, biological inspection, surveillance, and mobile devices. An intuitive way to improve NIR sensitivity is to thicken the light absorption layer (silicon). However, thickened silicon lacks NIR sensitivity and has other disadvantages, such as diminished optical performance (e.g. crosstalk) and difficulty in processing. In this paper, a pixel structure for NIR sensing using a stacked CMOS image sensor is introduced. There are two photodetection layers, a conventional layer and a bottom photodiode, in the stacked CMOS image sensor. The bottom photodiode is used as the NIR absorption layer. Therefore, the suggested pixel structure does not change the thickness of the conventional photodiode. To verify the suggested pixel structure, sensitivity was simulated using an optical simulator. As a result, the sensitivity was improved by a maximum of 130% and 160% at wavelengths of 850 nm and 940 nm, respectively, with a pixel size of 1.2 ㎛. Therefore, the proposed pixel structure is useful for NIR sensing without thickening the silicon.

Fuzzy Distance Estimation for a Fish Robot

  • Shin, Daejung;Na, Seung-You;Kim, Jin-Young
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.4
    • /
    • pp.316-321
    • /
    • 2005
  • We designed and implemented fish robots for various purposes such as autonomous navigation, maneuverability control, posture balancing and improvement of quick turns in a tank of 120 X 120 X 180cm size. Typically, fish robots have 30-50 X 15-25 X 10-20cm dimensions; length, width and height, respectively. It is essential to have the ability of quick and smooth turning to avoid collision with obstacles or walls of the water pool at a close distance. Infrared distance sensors are used to detect obstacles, magneto-resistive sensors are used to read direction information, and a two-axis accelerometer is mounted to compensate output of direction sensors. Because of the swing action of its head due to the tail fin movement, the outputs of an infrared distance sensor contain a huge amount of noise around true distances. With the information from accelerometers and e-compass, much improved distance data can be obtained by fuzzy logic based estimation. Successful swimming and smooth turns without collision demonstrated the effectiveness of the distance estimation.

A Study on the Training Methodology of Combining Infrared Image Data for Improving Place Classification Accuracy of Military Robots (군 로봇의 장소 분류 정확도 향상을 위한 적외선 이미지 데이터 결합 학습 방법 연구)

  • Donggyu Choi;Seungwon Do;Chang-eun Lee
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.3
    • /
    • pp.293-298
    • /
    • 2023
  • The military is facing a continuous decrease in personnel, and in order to cope with potential accidents and challenges in operations, efforts are being made to reduce the direct involvement of personnel by utilizing the latest technologies. Recently, the use of various sensors related to Manned-Unmanned Teaming and artificial intelligence technologies has gained attention, emphasizing the need for flexible utilization methods. In this paper, we propose four dataset construction methods that can be used for effective training of robots that can be deployed in military operations, utilizing not only RGB image data but also data acquired from IR image sensors. Since there is no publicly available dataset that combines RGB and IR image data, we directly acquired the dataset within buildings. The input values were constructed by combining RGB and IR image sensor data, taking into account the field of view, resolution, and channel values of both sensors. We compared the proposed method with conventional RGB image data classification training using the same learning model. By employing the proposed image data fusion method, we observed improved stability in training loss and approximately 3% higher accuracy.

Sensor Data Fusion for Navigation of Mobile Robot With Collision Avoidance and Trap Recovery

  • Jeon, Young-Su;Ahn, Byeong-Kyu;Kuc, Tae-Yong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2461-2466
    • /
    • 2003
  • This paper presents a simple sensor fusion algorithm using neural network for navigation of mobile robots with obstacle avoidance and trap recovery. The multiple sensors input sensor data to the input layer of neural network activating the input nodes. The multiple sensors used include optical encoders, ultrasonic sensors, infrared sensors, a magnetic compass sensor, and GPS sensors. The proposed sensor fusion algorithm is combined with the VFH(Vector Field Histogram) algorithm for obstacle avoidance and AGPM(Adaptive Goal Perturbation Method) which sets adaptive virtual goals to escape trap situations. The experiment results show that the proposed low-level fusion algorithm is effective for real-time navigation of mobile robot.

  • PDF

An Indoor User-Tracking Mobile Robot Based on Infrared Signal Detection (적외선을 사용한 사용자 추종 이동로봇)

  • Kwon, Soon T.;Park, Sang H.;Joo, Moon G.
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.7 no.1
    • /
    • pp.25-31
    • /
    • 2012
  • We propose a method for an indoor mobile robot to track user with infrared transmitter. Several infrared receivers attached around by the mobile robot enable the robot to determine the moving direction by comparing the received signal patterns. The cost of the proposed system is not only cheaper than ultrasonic system, image signal processing, RFID, and RSSI method, but also robust against environment change because any complex algorithm is not necessary. In the mobile robot, ultrasonic sensors are equipped to avoid obstacles located in the moving direction, and a simple algorithm is embedded to avoid the case of poor signal reception.

Walking and Stabilization Algorithm of Biped Robot on the Uneven Ground (이족보행로봇의 비평탄지형 보행 및 자세 안정화 알고리즘)

  • Kim Yong-Tae;Noh Su-Hee;Lee Hee-Jin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.1
    • /
    • pp.59-64
    • /
    • 2005
  • In the paper, we propose an intelligent walking algorithm of biped robot on the uneven ground and a posture stabilization algorithm against external forces. At first, the mechanics and the control system of biped robot that can walk on the uneven ground and stand external forces are designed. We propose obstacle hurdling, incline walking. and going-up stairs algorithm by using infrared sensors and FSR sensors. Also, posture stabilization algorithm against external forces is designed using FSR sensors. Infrared sensors ate used to detect the obstacles in the working environment and FSR sensors are used to obtain the ZMP of biped robot. The developed biped robot can be controlled by the remote control system using vision system and RF module. The experimental results show that the biped robot Performs obstacle avoidance, obstacle hurdling, walking on the inclined plane, and going up stairs using the proposed walking and stabilization algorithm.

Development of a new omnidirectional robot with one spherical wheel (하나의 구형바퀴를 가지는 새로운 전 방향 이동로보트의 개발)

  • 최병준;이연정
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1605-1608
    • /
    • 1997
  • In this paper, a new onmidirectional robot with one spherical wheel is porposed. The peculiar structure of the proposed mobile robot makes it possible not only to move sideways but to be easy to implement. The wheel is derived by two stepping motors and equipped with 8-infrared sensors. To prove the validity of the proposed robot, the experiment of going through a way is performed.

  • PDF

3D Environment Perception using Stereo Infrared Light Sources and a Camera (스테레오 적외선 조명 및 단일카메라를 이용한 3차원 환경인지)

  • Lee, Soo-Yong;Song, Jae-Bok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.5
    • /
    • pp.519-524
    • /
    • 2009
  • This paper describes a new sensor system for 3D environment perception using stereo structured infrared light sources and a camera. Environment and obstacle sensing is the key issue for mobile robot localization and navigation. Laser scanners and infrared scanners cover $180^{\circ}$ and are accurate but too expensive. Those sensors use rotating light beams so that the range measurements are constrained on a plane. 3D measurements are much more useful in many ways for obstacle detection, map building and localization. Stereo vision is very common way of getting the depth information of 3D environment. However, it requires that the correspondence should be clearly identified and it also heavily depends on the light condition of the environment. Instead of using stereo camera, monocular camera and two projected infrared light sources are used in order to reduce the effects of the ambient light while getting 3D depth map. Modeling of the projected light pattern enabled precise estimation of the range. Two successive captures of the image with left and right infrared light projection provide several benefits, which include wider area of depth measurement, higher spatial resolution and the visibility perception.

The analysis of the Effect the Minute Quantities of Infrared Rays that Were not Filtered by IR Cut-Off Filter has on Digital Images (IR Cut-Off Filter가 차단하지 못한 미량의 적외선이 디지털화상에 미치는 영향 분석)

  • Lee, Yong-Hwan;Park, Se-Won;Hong, Jung-Eui
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.5
    • /
    • pp.205-215
    • /
    • 2011
  • Films are sensitive to ultraviolet rays and in contrast, digital camera sensors are extremely sensitive to infrared rays due to the differences in spectral characteristics. As a result, all digital cameras that use CCD or CMOS are equipped with IR Cut-Off Filter on the overall sensor. Complete block out of infrared rays is ideal, but the actual experiment results showed that infrared rays were not being blocked out completely. Infrared permeability was also different for each camera. Therefore, this study aims to analyze the effect of the minute quantities of infrared rays, which get transmitted due to mechanical properties of IR Cut-Off Filters that are installed on digital cameras, on digital picture images. The results obtained by carrying out a comparative analysis of a UV Filter (infrared transmitting state) and a UV-IR Filter (infrared blocked out state) are as follows. It was confirmed that the minute quantities of infrared rays do affect dynamic range and resolution to some extent, despite the little or no difference in noise and color reproduction.