• 제목/요약/키워드: infrared ray

Search Result 1,098, Processing Time 0.024 seconds

Synthesis of Borosilicate Zeotypes by Steam-assisted Conversion Method (수증기 쪼임법에 의한 제올라이트형 보로실리케이트 제조방법)

  • Mansour, R.;Lafjah, M.;Djafri, F.;Bengueddach, A.
    • Journal of the Korean Chemical Society
    • /
    • v.51 no.2
    • /
    • pp.178-185
    • /
    • 2007
  • Intermediate pentasil borosilicate zeolite-like materials have been crystallized by a novel method named steam-assisted conversion, which involves vapor-phase transport of water. Indeed, amorphous powders obtained by drying Na2O.SiO2.B2O3.TBA2O gels of various compositions using different boron sources are transformed into crystalline borosilicate zeolite belonging to pentasil family structure by contact with vapors of water under hydrothermal conditions. Using a variant of this method, a new material which has an intermediate structure of MFI/MEL in the ratio 90:10 was crystallized. The results show that steam and sufficiently high pH in the reacting hydrous solid are necessary for the crystallization to proceed. Characterization of the products shows some specific structural aspects which may have its unique catalytic properties. X-ray diffraction patterns of these microporous crystalline borosilicates are subjected to investigation, then, it is shown that the product structure has good crystallinity and is interpreted in terms of regular stacking of pentasil layers correlated by inversion centers (MFI structure) but interrupted by faults consisting of mirror-related layers (MEL structure). The products are also characterized by nitrogen adsorption at 77 K that shows higher microporous volume (0.160 cc/g) than that of pure MFI phase (0.119 cc/g). The obtained materials revealed high surface area (~600 m2/g). The infrared spectrum reveals the presence of an absorption band at 900.75 cm-1 indicating the incorporation of boron in tetrahedral sites in the silicate matrix of the crystalline phase.

Study on the Copper-Arsenic Green Pigments used on Shamanic Paintings in the 19~20th century (19~20세기 무신도 등에 사용된 구리-비소 녹색 안료에 대한 연구)

  • Oh, Joon Suk;Choi, Jung Eun;Choi, Yoon Hee
    • Journal of Conservation Science
    • /
    • v.31 no.3
    • /
    • pp.193-214
    • /
    • 2015
  • The green pigments of shamanic paintings (83 items) in the 19~20th century were analyzed with X-ray fluorescent spectrometer(XRF), scanning electron microscopy (SEM) and fourier transform infrared spectroscopy (ATR-FTIR). In 60 items, copper and arsenic were detected in green pigments of the paintings by XRF spectra. Cu $K{\alpha}$/As $K{\beta}$ (peak intensity ratio of copper and arsenic) of shamanic paintings of Bokgaedang (shrine), solemn paintings (romance of three kingdoms) of Donggwanwangmyo and unknown enshrined place were 5.93~12.04 and higher compared to 5.67-6.26 of standard emerald greens and 4.01~7.89 of remaining shamanic paintings. The SEM images of crystal forms of copper-arsenic green pigments were various. Crystal forms were divided into oval and round spherulite with intersecting plate crystals and spherulite with agglomerate plate crystals. The crystals of the latter were found in shamanic paintings of Bokgaedang (shrine), solemn paintings (romance of three kingdoms) of Donggwanwangmyo and unknown enshrined place and the former were found in the rest of shamanic paintings. Copper-arsenic green pigments of shamanic paintings were identified as Scheele's green from shamanic paintings of Bokgaedang (shrine) and romance of three kingdoms. Emerald green from the rest of shamanic paintings by ATR-FTIR. From analytical results, it is confirmed that Scheele's green of shamanic paintings of Bokgaedang and romance of three kingdoms was used in the 1850s~1870s and emerald green had been widely used from late 19th century to 1970 in the rest of shamanic paintings.

Study on the effect of p-type doping in mid-infrared InAs/GaSb superlattice photodetectors

  • Han, Im-Sik;Lee, Yong-Seok;Nguyen, Tien Dai;Lee, Hun;Kim, Jun-O;Kim, Jong-Su;Gang, Sang-U;Choe, Jeong-U;Kim, Ha-Sul;Ku, Zahyun;Lee, Sang-Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.170.1-170.1
    • /
    • 2015
  • 안티모니 (Sb)를 기반으로 한 제2형 초격자 (Type II superlattice, T2SL)구조 적외선 검출기 연구는 2000년대 들어 Sb 계열의 화합물 반도체 성장 기술이 발전함에 따라 HgCdTe (MCT), InSb, 양자우물 적외선 검출기 (QWIP)를 대체할 수 있는 고성능의 양자형 적외선 검출 소재로 부상하였으며, 현재 전 세계적으로 활발한 연구가 진행되고 있다. 특히, 기존의 양자형 적외선 검출소자에 비해 전자의 유효질량이 상대적으로 커서 밴드 간의 투과전류가 줄어들 뿐만 아니라, 전자와 정공이 서로 다른 물질 영역에 분포하여 Auger 재결합률을 효과적으로 줄일 수 있어 상온 동작이 가능한 소재로 주목을 받고 있다. 또한, T2SL 구조는 초격자를 구성하는 물질의 두께나 조성 변화를 통한 밴드갭 변조가 용이하여 단파장에서 장파장 적외선에 이르는 광범위한 파장 대역에서 동작이 가능할 뿐만 아니라 구조적 변화를 통해 이중 대역을 동시에 검출 할 수 있는 차세대 적외선 열영상 소자로 알려져 있다. 본 연구에서는 분자선 에피택시(MBE)법을 이용하여 300 주기의 InAs/GaSb (10/10 ML) 제2형 초격자 구조를 성장하여 적외선 검출소자를 제작하였다. 제2형 초격자 구조를 구성하는 물질계에 p-type dopant인 Be을 이용하여 각각 도핑 농도가 다른 시료를 성장하였다. 이때 p-type 도핑 농도는 각각 $1/5/10{\times}10^{15}cm^{-3}$로 변화를 주었다. 성장된 시료의 구조적 특성 분석을 위해 고분해능 X선 회절 (High resolution X-ray diffraction, HRXRD)법을 이용하였으며, 초격자 한 주기의 두께가 6.2~6.4 nm 로 설계된 구조와 동일하게 성장됨을 확인 하였으며, 1차 위성피크의 반치폭은 30~80 arcsec로 우수한 결정성을 가짐을 확인하였다. 적외선 검출을 위한 $410{\times}410{\mu}m^2$ 크기의 단위 소자 공정을 진행하였으며 이때 적외선의 전면 입사를 위해 소자 위에 $300{\mu}m$의 윈도우 창을 제작하였다. 단위 소자의 측벽에는 표면 누설 전류가 흐르는데 이를 방지하기 위해서 표면보호막을 증착하였다. 적외선 검출 소자의 전기적 특성 평가를 위해 각각의 시료의 암전류 (dark current)와 파장별 반응 (spectral response)을 온도별로 측정하여 비교 및 분석하였다.

  • PDF

Removal of Cu(II) with the Recycled Hydroxylapatite from Animal Bones (동물뼈로부터 재활용된 hydroxylapatite를 이용한 Cu(II) 제거)

  • Kim, Mu-Nui;Kim, Won-Gee;Lee, Seung-Mok;Yang, Jae-Kyu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.9
    • /
    • pp.735-742
    • /
    • 2009
  • The bone of spinal animals has a hydroxylapatite ($Ca_{10}(PO_4)_6(OH)_2$, HAp) structure which is well known as an excellent inorganic ion exchanger for various heavy metal ions in solutions. In this study, the reusability of cow-bone, pig-bone and fish-bone as a potential material for the removal of heavy metals in solutions was evaluated from the removal of Cu(II) ion in batch tests. The surface properties of three bones, calcined at different temperatures, were measured with SEM, XRD, FT-IR analyses. From the SEM analysis, a clear development of heterogeneity as well as pores having small diameter was observed as the calcination temperature increased. The results of X-ray diffraction analysis showed well developed crystallinity on the surface of calcined bones obtained at higher temperatures, suggesting a transform of amorphous type to crystalline type. Fourier transform infrared (FT-IR) analysis showed disappearance of water molecule on the surface of HAp and organic functional groups of the HAp with increasing the calcination temperatures. Cu(II) removal in the control test was below 15%. By the way, additional 40% increase of Cu(II) removal was observed in the presence of calcined bones. For three bones, Cu(II) removal was decreased as the calcined temperature increased. Cu(II) removal was increased as the solution pH increased due to a favorable condition for the cation exchange as well as precipitation.

Effect of Various Sterilization Methods on Growth of Microorganism Contaminated in Ginseng Powder (여러 가지 살균방법이 인삼분말에 오염된 미생물의 성장에 미치는 영향)

  • 곽이성;장진규
    • Journal of Food Hygiene and Safety
    • /
    • v.16 no.3
    • /
    • pp.221-226
    • /
    • 2001
  • Various sterilization methods were applied to the powder of ginseng for the improving hygienic quality. Ultra-violet (UV) and Infrared ray (IR) treatments could not inhibit highly growth of bacteria in ginseng powder. However, high hydrostatic pressure treatment showed high inhibition rate against bacterial growth in ginseng powder. Changes of viable cell count by the pressure showed positive relationship between growth inhibition rates and the pressures applied. When powder was treated with 2,000 kg/$\textrm{cm}^2$ for 10 min at $25^{\circ}C$, initial viable cell count of the powder, 2.0$\times$10$^4$CFU/g, was decreased to 1.0$\times$10$^4$CFU/g. When it treated with 3,000, 4,000 and 5,000 kg/$\textrm{cm}^2$ of pressures under the same condition, viable cell counts were 8.0$\times$10$^3$, 7.0$\times$10$^3$and 1.8$\times$ 10$^3$CFU/g, respectively. Ginseng saponins of the powders were all detected when analyzed by TLC chromatography after treatment with the Pressures. Therefore, it was considered that saponin of ginseng powder was stable under the condition of 5,000 kg/$\textrm{cm}^2$ of pressure, even though the treatment induced coagulation of the powder.

  • PDF

GALAXIES ON DIET: FEEDBACK SIGNATURES IN RADIO-AGN HOST GALAXIES

  • Karouzos, Marios;Im, Myungshin;Trichas, Markos;Goto, Tomogotsu;Malkan, Matthew;Ruiz, Angel;Jeon, Yiseul;Kim, Ji Hoon;Lee, Hyung Mok;Kim, Seong Jin;Oi, Nagisa;Matsuhara, Hideo;Takagi, Toshinobu;Murata, Kazumi;Wada, Takehiko;Wada, Kensuke;Shim, Hyunjin;Hanami, Hitoshi;Serjeant, Stephen;White, Glenn;Pearson, Chris;Ohyama, Youichi
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.201-203
    • /
    • 2017
  • There exists strong evidence supporting the co-evolution of central supermassive black holes and their host galaxies; however it is still under debate how such a relation comes about and whether it is relevant for all or only a subset of galaxies. An important mechanism connecting AGN to their host galaxies is AGN feedback, potentially heating up or even expelling gas from galaxies. AGN feedback may hence be responsible for the eventual quenching of star formation and halting of galaxy growth. A rich multi-wavelength dataset ranging from the X-ray regime (Chandra), to far-IR (Herschel), and radio (WSRT) is available for the North Ecliptic Pole field, most notably surveyed by the AKARI infrared space telescope, covering a total area on the sky of 5.4 sq. degrees. We investigate the star formation properties and possible signatures of radio feedback mechanisms in the host galaxies of 237 radio sources below redshift z = 2 and at a radio 1.4 GHz flux density limit of 0.1 mJy. Using broadband SED modelling, the nuclear and host galaxy components of these sources are studied simultaneously as a function of their radio luminosity. Here we present results concerning the AGN content of the radio sources in this field, while also offering evidence showcasing a link between AGN activity and host galaxy star formation. In particular, we show results supporting a maintenance type of feedback from powerful radio-jets.

Synthesis of High Purity Alumina by Controlled Precipitation Method from Clay Minerals (I) Preparation of Aluminum Sulfate Hydrate and Alumina from Clay Minerals (점토 광물로부터 제어 침전법에 의한 고순도 알루미나의 합성 (I) 점토 광물로부터 수화 황산 알루미늄 및 알루미나의 제조)

  • No, Tae-Hwan;Lee, Heon-Su;Son, Myeong-Mo;Park, Hui-Chan
    • Korean Journal of Materials Research
    • /
    • v.2 no.1
    • /
    • pp.3-11
    • /
    • 1992
  • Aluminum sulfate hydrate was prepared using sulfuric acid from Ha-dong kaolin. The effects of calcination-temperature and calcination-time of kaolin, reaction-temperature and reaction-time, and sulfuric acid concentration on the formation of aluminum sulfate hydrate were investigated. The precipitation condition of aluminum sulfate hydrate from sulfuric acid solution was determined. Also, the products heat-treated at different temperatures have been investigated by X-ray diffraction, thermogravimetry, differential thermal analysis, Fourier transform infrared spectrophotometer, scanning electron microscopy, particle size distribution analysis and chemical analysis. In the optimum condition, the conversion of aluminum oxide in kaolin to aluminum sulfate hydrate was 60%. From the results of XRD, TG-DTA, and FT-IR, it is suggested that the aluminum sulfate hydrate is thermally decomposed as follows ; $Al_2(SO_4)_3{\cdot}18H_2O{\rightarrow}Al_2(SO_4)_3{\cdot}6H_2O{\rightarrow}Al_2(SO_4){\rightarrow}\;amorphous\;alumina{\rightarrow}{\gamma}-alumina{\rightarrow}{\delta}-alumina{\rightarrow}{\theta}-alumina{\rightarrow}{\alpha}-alumina$. The purity of alumina powder prepared by calcining aluminum sulfate hydrate at $1200^{\circ}C$ was 99.99 percent.

  • PDF

Fabrication of Silicon Quantum Dots in Si3N4 Matrix Using RF Magnetron Co-Sputtering (RF 마그네트론 코스퍼터링을 이용한 Si3N4 매트릭스 내부의 실리콘 양자점 제조연구)

  • Ha, Rin;Kim, Shin-Ho;Lee, Hyun-Ju;Park, Young-Bin;Lee, Jung-Chul;Bae, Jong-Seong;Kim, Yang-Do
    • Korean Journal of Materials Research
    • /
    • v.20 no.11
    • /
    • pp.606-610
    • /
    • 2010
  • Films consisting of a silicon quantum dot superlattice were fabricated by alternating deposition of silicon rich silicon nitride and $Si_3N_4$ layers using an rf magnetron co-sputtering system. In order to use the silicon quantum dot super lattice structure for third generation multi junction solar cell applications, it is important to control the dot size. Moreover, silicon quantum dots have to be in a regularly spaced array in the dielectric matrix material for in order to allow for effective carrier transport. In this study, therefore, we fabricated silicon quantum dot superlattice films under various conditions and investigated crystallization behavior of the silicon quantum dot super lattice structure. Fourier transform infrared spectroscopy (FTIR) spectra showed an increased intensity of the $840\;cm^{-1}$ peak with increasing annealing temperature due to the increase in the number of Si-N bonds. A more conspicuous characteristic of this process is the increased intensity of the $1100\;cm^{-1}$ peak. This peak was attributed to annealing induced reordering in the films that led to increased Si-$N_4$ bonding. X-ray photoelectron spectroscopy (XPS) analysis showed that peak position was shifted to higher bonding energy as silicon 2p bonding energy changed. This transition is related to the formation of silicon quantum dots. Transmission electron microscopy (TEM) and electron spin resonance (ESR) analysis also confirmed the formation of silicon quantum dots. This study revealed that post annealing at $1100^{\circ}C$ for at least one hour is necessary to precipitate the silicon quantum dots in the $SiN_x$ matrix.

Characteristics of SiO2/Si Quantum Dots Super Lattice Structure Prepared by Magnetron Co-Sputtering Method (마그네트론 코스퍼터링법으로 형성한 SiO2/Si 양자점 초격자 구조의 특성)

  • Park, Young-Bin;Kim, Shin-Ho;Ha, Rin;Lee, Hyun-Ju;Lee, Jung-Chul;Bae, Jong-Seong;Kim, Yang-Do
    • Korean Journal of Materials Research
    • /
    • v.20 no.11
    • /
    • pp.586-591
    • /
    • 2010
  • Solar cells have been more intensely studied as part of the effort to find alternatives to fossil fuels as power sources. The progression of the first two generations of solar cells has seen a sacrifice of higher efficiency for more economic use of materials. The use of a single junction makes both these types of cells lose power in two major ways: by the non-absorption of incident light of energy below the band gap; and by the dissipation by heat loss of light energy in excess of the band gap. Therefore, multi junction solar cells have been proposed as a solution to this problem. However, the $1^{st}$ and $2^{nd}$ generation solar cells have efficiency limits because a photon makes just one electron-hole pair. Fabrication of all-silicon tandem cells using an Si quantum dot superlattice structure (QD SLS) is one possible suggestion. In this study, an $SiO_x$ matrix system was investigated and analyzed for potential use as an all-silicon multi-junction solar cell. Si quantum dots with a super lattice structure (Si QD SLS) were prepared by alternating deposition of Si rich oxide (SRO; $SiO_x$ (x = 0.8, 1.12)) and $SiO_2$ layers using RF magnetron co-sputtering and subsequent annealing at temperatures between 800 and $1,100^{\circ}C$ under nitrogen ambient. Annealing temperatures and times affected the formation of Si QDs in the SRO film. Fourier transform infrared spectroscopy (FTIR) spectra and x-ray photoelectron spectroscopy (XPS) revealed that nanocrystalline Si QDs started to precipitate after annealing at $1,100^{\circ}C$ for one hour. Transmission electron microscopy (TEM) images clearly showed SRO/$SiO_2$ SLS and Si QDs formation in each 4, 6, and 8 nm SRO layer after annealing at $1,100^{\circ}C$ for two hours. The systematic investigation of precipitation behavior of Si QDs in $SiO_2$ matrices is presented.

Effect of the Viscosity of (Hydroxypropyl)methyl Cellulose on Dissolution Rate of Alfuzosin-HCl Granule Tablet (HPMC의 점도에 따른 염산 알푸조신 과립정제의 용출률 조절)

  • Kim, Won;Song, Byung-Joo;Kim, Dae-Sung;Kim, Su-Jin;Lee, Seon-Kyoung;Kim, Hye-Lin;Lee, Dong-Won;Khang, Gil-Son
    • Polymer(Korea)
    • /
    • v.34 no.3
    • /
    • pp.269-273
    • /
    • 2010
  • The primary objective of this work is to find the optimal condition for the granule tablet formulation of alfuzosin-HCl that aims to achieve a sustained drug release. (Hydroxypropyl)methyl cellulose (HPMC) is one of the most widely used polymer as a drug formulation and therefore has been utilized in this study as an excipient. Alfuzosin-HCl granule tablet was developed using the various viscosities of HPMC and the effects of viscosity on drug release was investigated. Fourier transform-infrared (FTIR) and X-ray diffraction (XRD) were employed to investigate the chemical structure and crystallization of alfuzosin-HCl in the formulation. We prepared the granule tablet by a direct compression method and studied the release profile in the stimulated intestinal fluid (pH 6.8). As the viscosity of HPMC increased the release of alfuzosin-HCl decreased, demonstrating that controlled release of alfuzosin-HCl can be achieved by varying the viscosity of HPMC.