• Title/Summary/Keyword: infrared radiometer

Search Result 64, Processing Time 0.035 seconds

Comparison of Land Surface Temperatures from Near-surface Measurement and Satellite-based Product

  • Ryu, Jae-Hyun;Jeong, Hoejeong;Choi, Seonwoong;Lee, Yang-Won;Cho, Jaeil
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.4
    • /
    • pp.609-616
    • /
    • 2019
  • Land surface temperature ($T_s$) is a critical variable for understanding the surface energy exchange between land and atmosphere. Using the data measured from micrometeorological flux towers, three types of $T_s$, obtained using a thermal-infrared radiometer (IRT), a net radiometer, and an equation for sensible heat flux, were compared. The $T_s$ estimated using the net radiometer was highly correlated with the $T_s$ obtained from the IRT. Both values acceptably fit the $T_s$ from the Terra/MODIS (Moderate Resolution Imaging Spectroradiometer)satellite. These results will enhance the measurement of land surface temperatures at various scales. Further, they are useful for understanding land surface energy partitioning to evaluate and develop land surface models and algorithms for satellite remote sensing products associated with surface thermal conditions.

Damage Degree Valuation of Forest Using NDVI from Near Infrared CCD Camera and Spectral Radiometer in a Forest Fire Area (근적외 CCD카메라와 분광반사계의 식생지수를 이용한 산불 발생지역에서의 산림 피해도 평가)

  • Choi, Seung-Pil;Kim, Dong-Hee;Park, Jong-Sun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.23 no.4
    • /
    • pp.367-374
    • /
    • 2005
  • Recently, forest damage has occurred often and made big issues. Among them, the damage by forest fire is not only damage of itself but also being connected with secondary damage like a flood. This is the fact that a forest fire is caused rather artificially by people than nature. In this study, we try to investigate damage of a forest fire through spectral reflectance of a plant community surveyed using a near infrared CCD camera and a SPM (Spectral Radiometer) as advanced work to use satellite image data. That is, damage of a forest fire by the naked eye observation was divided into the No damage, the light damage, the serious damage and we estimated activity of forest and grasped revival possibility of forest. Through correlation analysis between the spectral reflectance by SPM and the near infrared CCD camera, we could get high correlation in the No damage and light damage. Therefore, when we surveyed damage of a forest fire, we could grasp damage, that is hardly observed by the naked eye by, using jointly the spectral radiometer and the near infrared CCD camera.

Observation of the Cold-air Drainage and Thermal Belt Formation in a Small Mountainous Watershed by Using an Infrared Imaging Radiometer (적외선 영상 복사계를 이용한 산간집수역의 찬공기 배수와 온난대 형성 관측)

  • Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.13 no.2
    • /
    • pp.79-86
    • /
    • 2011
  • Cold-air drainage and pooling occur in most mountain valleys at night. Local climates with cold-air pooling could affect phenology and distribution of crop plants. A high resolution infrared imaging radiometer was used to visualize the cold-air drainage and thermal belt formation over a small mountainous watershed (ca. $10{\times}5{\times}1$ km for the maximum length${\times}$width${\times}$depth). Thermal images on $640{\times}480$ pixels were scanned across the Akyang valley (south of Mt. Jiri National Park) by the radiometer installed at a local peak ('Hyongjebong', 1,117 m a.s.l.) at dawn of 17 May 2011, when the synoptic condition was favorable for the surface cooling and cold-air drainage. Major findings are: (1) Cold-air drainage and accumulation was clearly identified by the lowest brightness temperature mainly at the valley bottom. (2) So-called 'thermal belt' with higher brightness temperature was found partway up the valley sidewalls and showed up to $5^{\circ}C$ departure from the valley bottom temperature. (3) Digital thermography showed feasibility for validation of the high definition geospatial temperature models currently in use for the plot-specific agrometeorological service.

TEST MODEL OF MILLIMETER-WAVE IMAGING RADIOMETER EQUIPMENT (MIRAE)

  • Lee, Ho-Jin;Kim, Won-Gyum;Seong, Jin-Taek;Kim, Dae-Suk;Na, Kyoung-Tae;Jung, Min-Kyoo;Chang, Yu-Shin;Kim, Soon-Tae;Kim, Yong-Hoon
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.365-368
    • /
    • 2007
  • Millimeter-wave (MMW) imaging radiometer systems have an attractive advantage to obtain an image through low visibility weather conditions such as fog, clouds and light rain compared with visible and infrared imaging systems. Many countries have developed a various kinds of MMW imaging radiometers for the aim of low cost and high performance. In Korea, Millimeter-wave Imaging RAdiometer Equipment (MIRAE) has been developed since the end of 2006. Recently the development of some modules was finished for the test model. This paper describes the design and development of the MIRAE. In addition, the test results of its manufactured modules are presented.

  • PDF

A Study on the Land Surface Emissivity (LSE) Distribution of Mid-wavelength Infrared (MWIR) over the Korean Peninsula (한반도 중파장적외선 지표 복사율 분포 연구)

  • Sun, Jongsun;Park, Wook;Won, Joong-sun
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.5
    • /
    • pp.423-434
    • /
    • 2016
  • Surface emissivity and its background values according to each sensor are mandatorily necessary for Mid-Wavelength Infrared (MWIR) remote sensing to retrieve surface temperature and temporal variation. This study presents the methods and results of Land Surface Emissivity (LSE) of the MWIR according to land cover over the Korean Peninsula. The MWIR emissivity was estimated by applying the Temperature Independent Spectral Indices (TISI) method to the Visible Infrared Imaging Radiometer Suite (VIIRS) band 4 Day/Night images ($3.74{\mu}m$ in center wavelength). The obtained values were classified according to land-cover types, and the obtained emissivity was then compared with those calculated from a standard Advanced Spaceborne Thermal Emission Reflection Radiometer (ASTER) spectral library. The annual means of MWIR emissivity of Deciduous Broadleaf Forest (0.958) and Mixed Forest (0.935) are higher than those of Croplands (0.925) and Natural Vegetation Mosaics (0.935) by about 2-3%. The annual mean of Urban area is the lowest (0.914) with an annual variation of about 2% which is by larger than those (1%) of other land-covers. The TISI and VIIRS based emissivity is slightly lower than the ASTER spectral library by about 2-3% supposedly due to various reasons such as lack of land cover homogeneity. The results will be used to understand the MWIR emissivity properties of the Korean Peninsula and to examine the seasonal and other environmental changes using MWIR images.

Retrieval of Oceanic Skin Sea Surface Temperature using Infrared Sea Surface Temperature Autonomous Radiometer (ISAR) Radiance Measurements (적외선 라디오미터 관측 자료를 활용한 해양 피층 수온 산출)

  • Kim, Hee-Young;Park, Kyung-Ae
    • Journal of the Korean earth science society
    • /
    • v.41 no.6
    • /
    • pp.617-629
    • /
    • 2020
  • Sea surface temperature (SST), which plays an important role in climate change and global environmental change, can be divided into skin sea surface temperature (SSST) observed by satellite infrared sensors and the bulk temperature of sea water (BSST) measured by instruments. As sea surface temperature products distributed by many overseas institutions represent temperatures at different depths, it is essential to understand the relationship between the SSST and the BSST. In this study, we constructed an observation system of infrared radiometer onboard a marine research vessel for the first time in Korea to measure the SSST. The calibration coefficients were prepared by performing the calibration procedure of the radiometer device in the laboratory prior to the shipborne observation. A series of processes were applied to calculate the temperature of the layer of radiance emitted from the sea surface as well as that from the sky. The differences in skin-bulk temperatures were investigated quantitatively and the characteristics of the vertical structure of temperatures in the upper ocean were understood through comparison with Himawari-8 geostationary satellite SSTs. Comparison of the skin-bulk temperature differences illustrated overall differences of about 0.76℃ at Jangmok port in the southern coast and the offshore region of the eastern coast of the Korean Peninsula from 21 April to May 6, 2020. In addition, the root-mean-square error of the skin-bulk temperature differences showed daily variation from 0.6℃ to 0.9℃, with the largest difference of 0.83-0.89℃ at 1-3 KST during the daytime and the smallest difference of 0.59℃ at 15 KST. The bias also revealed clear diurnal variation at a range of 0.47-0.75℃. The difference between the observed skin sea surface temperature and the satellite sea surface temperature showed a mean square error of approximately 0.74℃ and a bias of 0.37℃. The analysis of this study confirmed the difference in the skin-bulk temperatures according to the observation depth. This suggests that further ocean shipborne infrared radiometer observations should be carried out continuously in the offshore regions to understand diurnal variation as well as seasonal variations of the skin-bulk SSTs and their relations to potential causes.

A PROJECT ON GLOBAL ENVIRONMENTAL SATELLITE DATABASE BASED ON NETWORKS

  • Takagi, Mikio
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.296-298
    • /
    • 1999
  • Five institutions, which are very active in data utilization of environmental satellites NOAA and GMS, are connected via high speed networks to construct the databases based on the observations of A AVHRR (Advanced very High Resolution Radiometer) of NOAA satellite and VISSR (Visible and Infrared Scanning Radiometer) of GMS (Geostationary Meteorological Satellite) and to create scientific data sets for land, ocean and ,atmosphere. And vegetation index, sea surface temperature, cloud distribution maps and so on are generated by high speed and huge volume data Processing for studies on long term variations of land, ocean and atmosphere in Asia. In this paper the concept of this project and the activities at the Science University of Tokyo are briefly introduced

  • PDF

Measurement of temperature profile using the infrared thermal camera in turbulent stratified liquid flow for estimation of condensation heat transfer coefficients

  • Choi, Sung-Won;No, Hee-Cheon
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1999.05a
    • /
    • pp.107-107
    • /
    • 1999
  • Direct-contact condensation experiments of atmospheric steam and steam/air mixture on subcooled water flowing co-currently in a rectangular channel are carried out uszng an infrared thermal camera system to develop a temperature measurement method. The inframetrics Model 760 Infrared Thermal Imaging Radiometer is used for the measurement of the temperature field of the water film for various flow conditions. The local heat transfer coefficient is calculated using the bulk temperature gradient along the (low direction. It is also found that the temperature profiles can be used to understand the interfacial condensation heat transfer characteristics according to the flow conditions such as noncondensable gas effects, inclination effect, and flow rates.

  • PDF

The Application of ASTER TIR Satellite Imagery Data for Surface Temperature Change Analysis -A Case Study of Cheonggye Stream Restoration Project- (도시복원사업의 열 환경 변화 분석을 위한 ASTER 열적외 위성영상자료의 활용 -청계천 복원사업을 사례로-)

  • Jo, Myung-Hee;Jo, Yun-Won;Kim, Sung-Jae
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.12 no.1
    • /
    • pp.73-80
    • /
    • 2009
  • Recently in order to mange better life quality much effort was spent for environmental-friendly urban development project and environmental restoration project. During these projects, there should be deep understanding about atmospheric environment change analysis and long term monitoring so that it would be helpful for better environment promotion such as heat island mitigation effect and wind way construction. In this study, the surface temperature environment change between before and after Cheonggye Stream Restoration Project was mapped and analyzed by using ASTER(Advanced Spaceborne Thermal Emission Reflection Radiometer) TIR(Thermal Infrared) satellite imagery and finally the fact, that the heat island effect was mitigated, was clarified. For this study, the correlation analysis was conducted through comparing the difference between atmosphere temperature of AWS(Automatic Weather System) and surface temperature of ASTER. Furthermore, this study will be the infrastructure of urban meteorology model development by understanding surface temperature pattern change and executing quantitative analysis of heat island.

  • PDF

Using ASTER TIR imagery to identify Heat Islands: A case study of New Jersey (ASTER 열적외선 이미지를 이용한 열섬 현상 탐지: 뉴저지를 사례로)

  • Park, Gwang yong;David W. Gwynn;David A. Robinson
    • Proceedings of the KGS Conference
    • /
    • 2004.05a
    • /
    • pp.56-56
    • /
    • 2004
  • The ability to detect urban heat islands in satellite imagery is a function of spatial, spectral, and temporal resolutions. Imagery from the satellite-mounted Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) sensor acquired since December 1999 allows us to view the Earth at a higher spectral resolution in the thermal infrared (TIR) portion of the electromagnetic spectrum than most other satellite systems (e.g., AVHRR, Landsat TM). (omitted)

  • PDF