• Title/Summary/Keyword: infrared image

Search Result 902, Processing Time 0.034 seconds

Detection and Classification of Major Aerosol Type Using the Himawari-8/AHI Observation Data (Himawari-8/AHI 관측자료를 이용한 주요 대기 에어로솔 탐지 및 분류 방법)

  • Lee, Kwon-Ho;Lee, Kyu-Tae
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.3
    • /
    • pp.493-507
    • /
    • 2018
  • Due to high spatio-temporal variability of amount and optical/microphysical properties of atmospheric aerosols, satellite-based observations have been demanded for spatiotemporal monitoring the major aerosols. Observations of the heavy aerosol episodes and determination on the dominant aerosol types from a geostationary satellite can provide a chance to prepare in advance for harmful aerosol episodes as it can repeatedly monitor the temporal evolution. A new geostationary observation sensor, namely the Advanced Himawari Imager (AHI), onboard the Himawari-8 platform, has been observing high spatial and temporal images at sixteen wavelengths from 2016. Using observed spectral visible reflectance and infrared brightness temperature (BT), the algorithm to find major aerosol type such as volcanic ash (VA), desert dust (DD), polluted aerosol (PA), and clean aerosol (CA), was developed. RGB color composite image shows dusty, hazy, and cloudy area then it can be applied for comparing aerosol detection product (ADP). The CALIPSO level 2 vertical feature mask (VFM) data and MODIS level 2 aerosol product are used to be compared with the Himawari-8/AHI ADP. The VFM products can deliver nearly coincident dataset, but not many match-ups can be returned due to presence of clouds and very narrow swath. From the case study, the percent correct (PC) values acquired from this comparisons are 0.76 for DD, 0.99 for PA, 0.87 for CA, respectively. The MODIS L2 Aerosol products can deliver nearly coincident dataset with many collocated locations over ocean and land. Increased accuracy values were acquired in Asian region as POD=0.96 over land and 0.69 over ocean, which were comparable to full disc region as POD=0.93 over land and 0.48 over ocean. The Himawari-8/AHI ADP algorithm is going to be improved continuously as well as the validation efforts will be processed by comparing the larger number of collocation data with another satellite or ground based observation data.

Monitoring of the Volcanic Ash Using Satellite Observation and Trajectory Analysis Model (인공위성 자료와 궤적분석 모델을 이용한 화산재 모니터링)

  • Lee, Kwon-Ho;Jang, Eun-Suk
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.1
    • /
    • pp.13-24
    • /
    • 2014
  • Satellite remote sensing data have been valuable tool for volcanic ash monitoring. In this study, we present the results of application of satellite remote sensing data for monitoring of volcanic ash for three major volcanic eruption cases (2008 Chait$\acute{e}$n, 2010 Eyjafjallaj$\ddot{o}$kull, and 2011 Shinmoedake volcanoes). Volcanic ash detection products based on the Moderate Resolution Imaging Spectro-radiometer (MODIS) observation data using infrared brightness temperature difference technique were compared to the forward air mass trajectory analysis by the HYbrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model. There was good correlation between MODIS volcanic ash image and trajectory lines after the volcanic eruptions, which support the feasibility of using the integration of satellite observed and model derived data for volcanic ash forecasting.

Validation of Structural Safety on Multi-layered Blade-type Vibration Isolator for Cryocooler under Launch Vibration Environment (적층형 블레이드가 적용된 냉각기용 진동절연기의 발사환경에서의 구조건전성 검증)

  • Jeon, Young-Hyeon;Ko, Dai-Ho;Jo, Mun-Shin;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.7
    • /
    • pp.575-582
    • /
    • 2018
  • The spaceborne cooler is applied to cool down of the focal plane of the infrared detector of the observation satellite. However, this cooler induces unnecessary micro-jitter which can degrade the image quality of the high-resolution observation satellite. In this study, we proposed a multi-layered blade type vibration isolator to attenuate micro-vibration generated from a spaceborne cooler, while assuring structural safety of the cooler under severe launch loads without an additional launch-lock device. The blade of the isolator is formed with multi-layers in order to obtain durability against fatigue failure and an adhesive is applied between each layers for granting high damping capability under launch vibration environment. In this study, the basic characteristics of the isolator were measured using the free-vibration test. The effectiveness of the isolator design was demonstrated by launch vibration test at qualification level.

An Investigation on the Surface Flow Characteristics of Ogive-cylinder using the Infrared Ray Thermogram 3D Mapping Technique (적외선 온도 측정 3차원 매핑 기법을 이용한 오자이브 실린더 표면 유동 특성 파악)

  • LEE, Jaeho
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.4
    • /
    • pp.57-63
    • /
    • 2018
  • IR thermography is a non-invasive method and used for the visualization of the surface temperature of the model. However, this technique only derives 2D results and not quantitative data. The goal of this study is to apply the 3D mapping technique for IR thermography. The wind tunnel model is an ogive-cylinder with a wind speed of 20 m/s ~ 80 m/s and the angle of attack ranging from $0^{\circ}$ to $90^{\circ}$. The real location of the model was made to correspond with the position of the IR image using the makers. Based on this result, quantitative results were obtained. The 3D mapping method was verified by comparing the separation point and the theoretical value.

Spread Patterns of Thermal Effluent Discharged From Young-Kwang Nuclear Power Plant Using Remote Sensing Data

  • Han J. G.;Yeon Y. K.;Chi K. H.
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.331-335
    • /
    • 2004
  • This study is focused to analyze the movement of thermal effluent dischargeed from nuclear power plant by season, ebb and flow, and before and after foundation of tide embankment using thermal infrared band image of 28 scenes observed from Landsat from 1987 to 2004, which is the early stage of operation of young-kwang nuclear power plant. In diffusion of thermal effluent discharge by seasons, spring and summer is spreading further than autumn and winter. It is considered to distribute widely mixed with thermal effluent discharge and hot water, which is distributed naturally along the seaside. It is known the fact that tidal currents control the direction of diffusion of thermal effluent discharge by the change of ebb and flow. Namely, it is distributed widely on the Southwest direction along the seaside by tidal currents when ebb and, it is moved widely on the Northeast direction along the seaside by tidal current when flood. However, in the early stage of flood current, the mainstream of thermal effluent discharge is spread on Southwest direction and, the direction is changed on North­east way when the latter period of flood current. Similarly, in the early stage of ebb current, the mainstream of thermal effluent discharge is spread on Northeast direction and, the direction is changed on Southwest direction when the latter period of ebb current. As the result of comparing to the diffusion pattern of thermal effluent discharge before and after the foundation of seawall, discharged thermal effluent from the drain of plant by the foundation of dike is shown as curved circle pattern on Northeast to West direction from the ending portion of the seawall.

  • PDF

DEVELOPMENT OF GOCI/COMS DATA PROCESSING SYSTEM

  • Ahn, Yu-Hwan;Shanmugam, Palanisamy;Han, Hee-Jeong;Ryu, Joo-Hyung
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.90-93
    • /
    • 2006
  • The first Geostationary Ocean Color Imager (GOCI) onboard its Communication Ocean and Meteorological Satellite (COMS) is scheduled for launch in 2008. GOCI includes the eight visible-to-near-infrared (NIR) bands, 0.5km pixel resolution, and a coverage region of 2500 ${\times}$ 2500km centered at 36N and 130E. GOCI has had the scope of its objectives broadened to understand the role of the oceans and ocean productivity in the climate system, biogeochemical variables, geological and biological response to physical dynamics and to detect and monitor toxic algal blooms of notable extension through observations of ocean color. The special feature with GOCI is that like MODIS, MERIS and GLI, it will include the band triplets 660-680-745 for the measurements of sun-induced chlorophyll-a fluorescence signal from the ocean. The GOCI will provide SeaWiFS quality observations with frequencies of image acquisition 8 times during daytime and 2 times during nighttime. With all the above features, GOCI is considered to be a remote sensing tool with great potential to contribute to better understanding of coastal oceanic ecosystem dynamics and processes by addressing environmental features in a multidisciplinary way. To achieve the objectives of the GOCI mission, we develop the GOCI Data Processing System (GDPS) which integrates all necessary basic and advanced techniques to process the GOCI data and deliver the desired biological and geophysical products to its user community. Several useful ocean parameters estimated by in-water and other optical algorithms included in the GDPS will be used for monitoring the ocean environment of Korea and neighbouring countries and input into the models for climate change prediction.

  • PDF

Analysis The Intensity of Weathering of The Rock Surface Using 3D Terrestrial Laser Scanner and Thermal Infrared Instrument (열적외선 기기와 3차원 레이저 스캐너를 이용한 암석 표면의 풍화강도 분석)

  • Lee, Soo-Gon;Cho, Hang-Kyo;Xu, Jing
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1324-1333
    • /
    • 2010
  • This paper is used in a recent civil engineering field in three-dimensional laser-meter tiles using thermal imaging cameras for the weathered rock slopes precisely measured indirectly, to the degree that began in the will. In the field is difficult to access the degree of weathering of the rock slope to the existing direct way to compensate for the shortcomings of 3D Terrestrial Laser Scanner and weathering characteristics of rocks using thermal imaging cameras to get the information to analyze the degree of rock weathering is. Intensity of 3D TLS and the thermal camera with image analysis to analyze the degree of weathering of bedrock in the field of core drilling targeting indoor laboratory tests were analyzed through the study. Granite, gneiss, sandstone, much of the cancerous samples, each experiment has a 40 per category, each of which 30 were used to analyze the data collected. That degree of rock weathering, the rock, depending on the strength of the Intensity values can change, depending on the level of thermal imaging camera, also weathered the changes in temperature could see. Intensity is the strength of weak rocks, the more value decrease, the temperature of the thermal imaging camera through the swell Intensity and notice that the temperature had an inverse relationship. Intensity value of the low strength of weak rock, but the value came out of the rocks have been proved to be largely dependent on the contrast. The contrast of the surface rocks are weathered dark Intensity values lower temperature to swell the contrary, the degree of weathering can be distinguished.

  • PDF

Intra-night optical variability of AGN in COSMOS field

  • Kim, Joonho;Karouzos, Marios;Im, Myungshin;Kim, Dohyeong;Jun, Hyunsung;Lee, Joon Hyeop;Pallerola, Mar Mezcua
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.64.2-64.2
    • /
    • 2016
  • Optical variability is one way to probe the nature of the central engine of AGN at smaller linear scales and previous studies have shown that optical variability is more prevalent at longer timescales and at shorter wavelengths. Especially, intra-night variability can be explained through the damped random walk model but small samples and inhomogeneous data have made constraining this model hard. To understand the properties and physical mechanism of optical variability, we are performing the KMTNet Active Nuclei Variability Survey (KANVaS). Test data of KMTNet in the COSMOS field was obtained over 2 separate nights during 2015, in B, V, R, and I bands. Each night was composed of 5 and 9 epochs with ~30 min cadence. To find AGN in the COSMOS field, we applied multi-wavelength selection methods. Different selection methods means we are looking different region in unification model of AGN, and 100~120, 400~500, 50~100 number of AGN are detected in X-ray, mid-infrared, and radio selection of AGN, respectively. We performed image convolution to reflect seeing fluctuation, then differential photometry between the selected AGN and nearby stars to achieve photometric uncertainty ~0.01mag. We employed one of the standard time-series analysis tools to identify variable AGN, chi-square test. Preliminarily results indicate that intra-night variability is found for X-ray selected, Type1 AGN are 23.6%, 26.4%, 21.3% and 20.7% in the B, V, R, and I band, respectively. The majority of the identified variable AGN are classified as Type 1 AGN, with only a handful of Type 2 AGN showing evidence for variability. The work done so far confirms that there are type and wavelength dependence of intra-night optical variability of AGN.

  • PDF

Automatic Target Recognition by selecting similarity-transform-invariant local and global features (유사변환에 불변인 국부적 특징과 광역적 특징 선택에 의한 자동 표적인식)

  • Sun, Sun-Gu;Park, Hyun-Wook
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.39 no.4
    • /
    • pp.370-380
    • /
    • 2002
  • This paper proposes an ATR (Automatic Target Recognition) algorithm for identifying non-occluded and occluded military vehicles in natural FLIR (Forward Looking InfraRed) images. After segmenting a target, a radial function is defined from the target boundary to extract global shape features. Also, to extract local shape features of upper region of a target, a distance function is defined from boundary points and a line between two extreme points. From two functions and target contour, four global and four local shape features are proposed. They are much more invariant to translation, rotation and scale transform than traditional feature sets. In the experiments, we show that the proposed feature set is superior to the traditional feature sets with respect to the similarity-transform invariance and recognition performance.

Flight Model Development of the MIRIS, the Main Payload of STSAT-3

  • Han, Won-Yong;Lee, Dae-Hee;Park, Young-Sik;Jeong, Woong-Seob;Moon, Bong-Kon;Park, Kwi-Jong;Park, Sung-Joon;Pyo, Jeong-Hyun;Lee, Duk-Hang;Nam, Uk-Won;Park, Jang-Hyun;Seon, Kwang-Il;Yang, Sun-Choel;Park, Jong-Oh;Rhee, Seung-Wu;Lee, Hyung-Mok;Matsumoto, Toshio
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.65.1-65.1
    • /
    • 2012
  • MIRIS (Multipurpose Infra-Red Imaging System) is the first Korean Infrared Space Telescope developed by KASI (Korea Astronomy and Space Science Institute), and is the main payload of STSAT-3 (Science and Technology Satellite-3). The FM (fight model) of MIRIS has been recently completed, and various performance tests have been made to measure system parameters such as readout noise, system gain, linearity, and dark current. Final thermal-vacumm test of the MIRIS and the vibration test of the electronics box have been performed. Band response tests showed good agreement with the initial design requirements. No significant dark difference was measured within the expected temperature variation range during observation in orbit. Using Pa-alpha band from a uniform source, the readout noise and system gain were measured by mean variance test. To obtain uniform flat image, flat fielding tests were made for each band, and the data will be compared to that obtained in orbit for calibration. The final version of MIRIS FM will be delivered in March, and it will be integrated into the satellite system for the AIT (Assembly Integration, Test) procedure. The launch of MIRIS is expected in November 2012.

  • PDF