DOI QR코드

DOI QR Code

Monitoring of the Volcanic Ash Using Satellite Observation and Trajectory Analysis Model

인공위성 자료와 궤적분석 모델을 이용한 화산재 모니터링

  • Lee, Kwon-Ho (Department of Geoinformatics Engineering, Kyungil University) ;
  • Jang, Eun-Suk (Faculty of Engineering, Hanzhong University)
  • Received : 2013.09.28
  • Accepted : 2013.11.25
  • Published : 2014.02.28

Abstract

Satellite remote sensing data have been valuable tool for volcanic ash monitoring. In this study, we present the results of application of satellite remote sensing data for monitoring of volcanic ash for three major volcanic eruption cases (2008 Chait$\acute{e}$n, 2010 Eyjafjallaj$\ddot{o}$kull, and 2011 Shinmoedake volcanoes). Volcanic ash detection products based on the Moderate Resolution Imaging Spectro-radiometer (MODIS) observation data using infrared brightness temperature difference technique were compared to the forward air mass trajectory analysis by the HYbrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model. There was good correlation between MODIS volcanic ash image and trajectory lines after the volcanic eruptions, which support the feasibility of using the integration of satellite observed and model derived data for volcanic ash forecasting.

인공위성 원격탐사 자료는 화산재 모니터링을 위한 중요한 도구로서 사용되어 왔다. 본 연구는 최근에 발생한 주요 화산폭발 사례(2008년 Chait$\acute{e}$n 화산, 2010년 Eyjafjallaj$\ddot{o}$kull 화산, 2011년 Shinmoedake 화산)를 대상으로 인공위성자료를 이용한 화산재 모니터링과 궤적분석 모델링을 수행하였다. 이를 위하여 Moderate Resolution Imaging Spectro-radiometer(MODIS) 인공위성 관측자료로부터 적외선 밝기온도차 기법을 적용하여 산출된 화산재 탐지 산출물과 HYbrid Single-Particle Lagrangian Integrated Trajectory(HYSPLIT) 모델을 이용한 전진궤적분석자료를 상호 비교하였다. 그 결과, 인공위성을 이용한 화산재 탐지 산출물은 모델링한 궤적분석 결과와 상호간에 관련성이 높게 나타났다. 이러한 결과는 인공위성 관측자료와 모델링의 통합분석자료가 화산재 감시 및 예측을 위하여 중요한 역할을 수행할 수 있는 가능성을 제시한다.

Keywords

References

  1. Derimian, Y., O. Dubovik, D. Tanre, P. Goloub, T. Lapyonok, and A. Mortier, 2012. Optical properties and radiative forcing of the Eyjafjallajokull volcanic ash layer observed over Lille, France, in 2010, J. Geophys. Res., 117: D00U25, doi:10.1029/2011JD016815.
  2. Draxler, R.R., 1999. HYSPLIT4 user's guide. NOAA Tech. Memo. ERL ARL-230, NOAA Air Resources Laboratory, Silver Spring, MD.
  3. Draxler, R.R., and G.D. Hess, 1997. Description of the HYSPLIT_4 modeling system. NOAA Tech. Memo. ERL ARL-224, NOAA Air Resources Laboratory, Silver Spring, MD, pp. 24.
  4. Draxler, R.R., and G.D. Hess, 1998. An overview of the HYSPLIT_4 modeling system of trajectories, dispersion, and deposition, Aust. Meteor. Mag., 47: 295-308.
  5. Ellrod, G.P., B.H. Connell, and D.W. Hillger, 2003. Improved detection of airborne volcanic ash using multi-spectral infrared satellite data. J. Geophys. Res., 108(D12), DOI: 10.1029/2002JD002802.
  6. ESA(European Space Agency), 2010. Ash plume of Eyjafjallajoekull volcano monitored, Science Daily, 22 Apr. 2010.
  7. Francis, P.N., M.C. Cooke, and R.W. Saunders, 2012. Retrieval of physical properties of volcanic ash using Meteosat: A case study from the 2010 Eyjafjallajull eruption, J. Geophys. Res., 117, D00U09, doi:10.1029/2011JD016788.
  8. Gasteiger, J., S. GroB, V. Freudenthaler, and M. Wiegner, 2011. Volcanic ash from Iceland over Munich: mass concentration retrieved from ground-based remote sensing measurements, Atmos. Chem. Phys., 11: 2209-2223, doi:10.5194/acp-11-2209-2011.
  9. Hansen, J., A. Lacis, R. Ruedy, and M. Sato, 1992. Potential climate impact of Mount-Pinatubo eruption, Geophys. Res. Lett., 19(2): 215-218, doi:10.1029/91GL02788.
  10. Heffter, J.L. and B.J. Stunder, 1993. Volcanic ash forecast transport and dispersion(VAFTAD) model, Wea Forecasting, 8: 534-541.
  11. Heffter, J.L., 1996. Volcanic ash model verification using a Klyuchevskoi eruption, Geophy. Res. Letters, 23(12): 1489-1492. https://doi.org/10.1029/96GL01270
  12. Heffter, J.L., B.J.B. Stunder, and G.D. Rolph, 1990. Long-range forecast trajectories of volcanic ash from Redoubt volcano eruptions, Bull. Amer. Meteor. Soc., 71(12): 1731-1738. https://doi.org/10.1175/1520-0477(1990)071<1731:LRFTOV>2.0.CO;2
  13. Horwell, C.J. and P.J. Baxter, 2006. The respiratory health hazards of volcanic ash: a review for volcanic risk mitigation,. Bulletin of Volcanology, 69: 1-24. https://doi.org/10.1007/s00445-006-0052-y
  14. Kalnay, E., M. Kanamitsu, R. Kistler, W. Collins, D. Deaven, L. Gandin, M. Iredell, S. Saha, G. White, J. Woollen, Y. Zhu, A. Leetmaa, R. Reynolds, M. Chelliah, W. Ebisuzaki, W. Higgins, J. Janowiak, K. C. Mo, C. Ropelewski, J. Wang, R. Jenne, and D. Joseph, 1996. The NCEP/NCAR 40-year reanalysis project, Bull. Amer. Meteor. Soc., 77: 437-470. https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
  15. Kaufman, Y.J., D. Tanre, L.A. Remer, E.F. Vermote, D.A. Chu, and B.N. Holben, 1997. Operational remote sensing of tropospheric aerosol over the land from EOS-MODIS, J. Geophys. Res., 102: 17,051-17,061. https://doi.org/10.1029/96JD03988
  16. Lee, D.H., K.H. Lee, and Y.J. Kim, 2006a. Application of MODIS Aerosol Data for Aerosol Type Classification, Korean J. of Remote Sensing, 22(6): 495-505 (in Korean with English abstract). https://doi.org/10.7780/kjrs.2006.22.6.495
  17. Lee, D.H., K.H. Lee, and Y.J. Kim, 2006b. Atmospheric aerosol detection and its removal for satellite data, Korean J. of Remote Sensing, 22(5): 1-5. https://doi.org/10.7780/kjrs.2006.22.1.1
  18. Lee, K.H., C.S. Hong, and Y.J. Kim, 2004. Atmospheric Aerosol Monitoring Over Northeast Asia During 2001 from MODIS and TOMS data, Korean J. of Remote Sensing, 20(2): 77-89 (in Korean with English abstract). https://doi.org/10.7780/kjrs.2004.20.2.77
  19. Lee, K.H., D.H. Lee, and Y.J. Kim, 2006. Application of MODIS satellite observation data for air quality forecast, J. of Korean Society for Atmospheric Environment, 22(6): 851-862 (in Korean with English abstract).
  20. Lee, S.H. and Yun, S.H. Yun, 2011. Impact of meteorological wind fields average on predicting volcanic tephra dispersion of Mt. Baekdu. J. Korean Earth Sci. Soc., 32(4): 360-372 (in Korean with English abstract). https://doi.org/10.5467/JKESS.2011.32.4.360
  21. Lee, S.H., E.S. Jang, and H.M. Lee, 2012. A case analysis of volcanic ash dispersion under various volcanic explosivity index of the Mt. Baegdu. J. Korean Earth Sci. Soc., 33(3): 280-293 (in Korean with English abstract). https://doi.org/10.5467/JKESS.2012.33.3.280
  22. Mastin, L.G., M. Guffanti, R. Servranckx, V. Webley, S. Barsotti, K. Dean, A. Durant, J.W. Ewert, A. Neri, W.I. Rose, D. Schneider, L. Siebert, B. Stunder, G. Swanson, A. Tupper, A. Volentik, and C.F. Waythomas, 2009. A multidisciplinary effort to assign realistic source parameters to models of volcanic ash-cloud transport and dispersion during eruptions, Journal of Volcanology and Geothermal Research, 186(1-2): 10-21. https://doi.org/10.1016/j.jvolgeores.2009.01.008
  23. Osores, M.S., A. Folch, E. Collini, G. Villarosa, A. Durant, G. Pujol, and J.G. Viramonte, 2013. Validation of the FALL3D model for the 2008 Chaiten eruption using field and satellite data, Andean Geology, 40(2): 262-276, doi: 10.5027/andgeoV40n2-a05.
  24. Pavolonis, M.J., W.F. Feltz, A.K. Heidinger, and G.M. Gallina, 2006. A daytime complement to the reverse absorption technique for improved automated detection of volcanic ash, J. Atmos. Oceanic Technol., 23: 1422-1444. https://doi.org/10.1175/JTECH1926.1
  25. Prata, A.J., 1989a. Observations of volcanic ash clouds in the 10-12-micron window using AVHRR/2 Data, Int. J. Remote Sens., 10: 751-761. https://doi.org/10.1080/01431168908903916
  26. Prata, A.J., 1989b. Radiative transfer calculations for volcanic ash clouds, Geophys. Res. Lett., 16(11): 1293-1296. https://doi.org/10.1029/GL016i011p01293
  27. Prata, A.J., G.J.S. Bluth, W.I. Rose, D.J. Schneider, and A.C. Tupper, 2001. Comments on failures in detecting volcanic ash from a satellite-based technique Rem. Sensing Environ, 78: 341-346. https://doi.org/10.1016/S0034-4257(01)00231-0
  28. Sawamura P., J. Vernier, J. Barnes, T. Berkoff, E. Welton, L. Alados-Arboledas, F. Navas-Guzman, G. Pappalardo, L. Mona, and F. Madonna, 2012. Stratospheric AOD after the 2011 eruption of Nabro volcano measured by lidars over the Northern Hemisphere, Environ. Res. Lett., 7(3), doi:10.1088/1748-9326/7/3/034013.
  29. Simpson, J.J., G. Hufford, D. Pieri, and J. Berg, 2000. Failures in detecting volcanic ash from asatellite-based technique, Remote Sens. Environ., 72: 191-217. https://doi.org/10.1016/S0034-4257(99)00103-0
  30. Stunder, B.J.B., J.L. Heffter, and R.R. Draxler, 2007. Airborne Volcanic Ash Forecast Area Reliability, Weather and Forecasting, 22: 1132-1139, DOI: 10.1175/WAF1042.1.
  31. Tanre, D., Y.J. Kaufman, M. Herman, and S. Mattoo, 1997. Remote sensing of aerosol properties over oceans using the MODIS/EOS spectral radiances, J. Geophys. Res., 102, 16971-16988. https://doi.org/10.1029/96JD03437
  32. Tupper, A., J. Davey, P. Stewart, B. Stunder, R. Servranckx, and F. Prata, 2006. Aircraft encounters with volcanic clouds over Micronesia, Oceania, 2002/03, Australian Meteorological Magazine, 55: 289-299.
  33. Watkin, S.C., 2003. The application of AVHRR data for the detection of volcanic ash in a Volcanic Ash Advisory Centre, Meteorol. Appl., 10: 301-311. https://doi.org/10.1017/S1350482703001063
  34. Webley, P.W., B.J.B. Stunder, and K.G. Dean, 2009. Preliminary sensitivity study of eruption source parameters for operational volcanic ash cloud transport and dispersion models - A case study of the August 1992 eruption of the Crater Peak vent, Mount Spurr, Alaska, Journal of Volcanology and Geothermal Research, 186: 108-119. https://doi.org/10.1016/j.jvolgeores.2009.02.012
  35. Wen, S. and W.I. Rose, 1994. Retrieval of sizes and total masses of particles in volcanic ash clouds using AVHRR bands 4 and 5, J. Geophys. Res., 99: 5421-5431. https://doi.org/10.1029/93JD03340
  36. Yun, S.H and J.H. Lee, 2012. Analysis of unrest signs of activity at the Baegdusan volcano, J. Petrol. Soc. Korea, 21(1): 1-12 (in Korean with English abstract). https://doi.org/10.7854/JPSK.2012.21.1.001
  37. Yun, S.H. and Z.C. Cui, 1996. Historical eruption records on the Cheonji caldera volcano in the Mt . Paektu, J. Korean Earth Sci. Soc., 17(5): 376-382 (in Korean with English abstract).
  38. Zaksek, K., M. Hort, J. Zaletelj, and B. Langmann, 2013. Monitoring volcanic ash cloud top height through simultaneous retrieval of optical data from polar orbiting and geostationary satellites, Atmos. Chem. Phys., 13: 2589-2606, doi:10.5194/acp-13-2589-2013.

Cited by

  1. Monitoring and Forecasting the Eyjafjallajökull Volcanic Ash using Combination of Satellite and Trajectory Analysis vol.30, pp.2, 2014, https://doi.org/10.5572/KOSAE.2014.30.2.139
  2. Construction of a REDD Monitoring System Using GIS and RS Techniques vol.9, pp.2, 2014, https://doi.org/10.5772/45661
  3. 천리안 위성영상(MI)과 Landsat-8 위성영상(OLI, TIRS)을 이용한 화산재 정보 산출: 사쿠라지마 화산의 사례연구 vol.33, pp.5, 2014, https://doi.org/10.7780/kjrs.2017.33.5.1.11