Browse > Article
http://dx.doi.org/10.7780/kjrs.2014.30.1.2

Monitoring of the Volcanic Ash Using Satellite Observation and Trajectory Analysis Model  

Lee, Kwon-Ho (Department of Geoinformatics Engineering, Kyungil University)
Jang, Eun-Suk (Faculty of Engineering, Hanzhong University)
Publication Information
Korean Journal of Remote Sensing / v.30, no.1, 2014 , pp. 13-24 More about this Journal
Abstract
Satellite remote sensing data have been valuable tool for volcanic ash monitoring. In this study, we present the results of application of satellite remote sensing data for monitoring of volcanic ash for three major volcanic eruption cases (2008 Chait$\acute{e}$n, 2010 Eyjafjallaj$\ddot{o}$kull, and 2011 Shinmoedake volcanoes). Volcanic ash detection products based on the Moderate Resolution Imaging Spectro-radiometer (MODIS) observation data using infrared brightness temperature difference technique were compared to the forward air mass trajectory analysis by the HYbrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model. There was good correlation between MODIS volcanic ash image and trajectory lines after the volcanic eruptions, which support the feasibility of using the integration of satellite observed and model derived data for volcanic ash forecasting.
Keywords
Satellite; remote sensing; volcanic ash; trajectory analysis; modeling;
Citations & Related Records
Times Cited By KSCI : 7  (Citation Analysis)
연도 인용수 순위
1 Prata, A.J., 1989b. Radiative transfer calculations for volcanic ash clouds, Geophys. Res. Lett., 16(11): 1293-1296.   DOI
2 Prata, A.J., G.J.S. Bluth, W.I. Rose, D.J. Schneider, and A.C. Tupper, 2001. Comments on failures in detecting volcanic ash from a satellite-based technique Rem. Sensing Environ, 78: 341-346.   DOI   ScienceOn
3 Sawamura P., J. Vernier, J. Barnes, T. Berkoff, E. Welton, L. Alados-Arboledas, F. Navas-Guzman, G. Pappalardo, L. Mona, and F. Madonna, 2012. Stratospheric AOD after the 2011 eruption of Nabro volcano measured by lidars over the Northern Hemisphere, Environ. Res. Lett., 7(3), doi:10.1088/1748-9326/7/3/034013.   DOI   ScienceOn
4 Watkin, S.C., 2003. The application of AVHRR data for the detection of volcanic ash in a Volcanic Ash Advisory Centre, Meteorol. Appl., 10: 301-311.   DOI   ScienceOn
5 Simpson, J.J., G. Hufford, D. Pieri, and J. Berg, 2000. Failures in detecting volcanic ash from asatellite-based technique, Remote Sens. Environ., 72: 191-217.   DOI   ScienceOn
6 Stunder, B.J.B., J.L. Heffter, and R.R. Draxler, 2007. Airborne Volcanic Ash Forecast Area Reliability, Weather and Forecasting, 22: 1132-1139, DOI: 10.1175/WAF1042.1.   DOI
7 Tupper, A., J. Davey, P. Stewart, B. Stunder, R. Servranckx, and F. Prata, 2006. Aircraft encounters with volcanic clouds over Micronesia, Oceania, 2002/03, Australian Meteorological Magazine, 55: 289-299.
8 Webley, P.W., B.J.B. Stunder, and K.G. Dean, 2009. Preliminary sensitivity study of eruption source parameters for operational volcanic ash cloud transport and dispersion models - A case study of the August 1992 eruption of the Crater Peak vent, Mount Spurr, Alaska, Journal of Volcanology and Geothermal Research, 186: 108-119.   DOI   ScienceOn
9 Wen, S. and W.I. Rose, 1994. Retrieval of sizes and total masses of particles in volcanic ash clouds using AVHRR bands 4 and 5, J. Geophys. Res., 99: 5421-5431.   DOI
10 Yun, S.H and J.H. Lee, 2012. Analysis of unrest signs of activity at the Baegdusan volcano, J. Petrol. Soc. Korea, 21(1): 1-12 (in Korean with English abstract).   과학기술학회마을   DOI   ScienceOn
11 Yun, S.H. and Z.C. Cui, 1996. Historical eruption records on the Cheonji caldera volcano in the Mt . Paektu, J. Korean Earth Sci. Soc., 17(5): 376-382 (in Korean with English abstract).   과학기술학회마을
12 Zaksek, K., M. Hort, J. Zaletelj, and B. Langmann, 2013. Monitoring volcanic ash cloud top height through simultaneous retrieval of optical data from polar orbiting and geostationary satellites, Atmos. Chem. Phys., 13: 2589-2606, doi:10.5194/acp-13-2589-2013.   DOI
13 Tanre, D., Y.J. Kaufman, M. Herman, and S. Mattoo, 1997. Remote sensing of aerosol properties over oceans using the MODIS/EOS spectral radiances, J. Geophys. Res., 102, 16971-16988.   DOI
14 Draxler, R.R., and G.D. Hess, 1997. Description of the HYSPLIT_4 modeling system. NOAA Tech. Memo. ERL ARL-224, NOAA Air Resources Laboratory, Silver Spring, MD, pp. 24.
15 Draxler, R.R., and G.D. Hess, 1998. An overview of the HYSPLIT_4 modeling system of trajectories, dispersion, and deposition, Aust. Meteor. Mag., 47: 295-308.
16 Derimian, Y., O. Dubovik, D. Tanre, P. Goloub, T. Lapyonok, and A. Mortier, 2012. Optical properties and radiative forcing of the Eyjafjallajokull volcanic ash layer observed over Lille, France, in 2010, J. Geophys. Res., 117: D00U25, doi:10.1029/2011JD016815.   DOI
17 Draxler, R.R., 1999. HYSPLIT4 user's guide. NOAA Tech. Memo. ERL ARL-230, NOAA Air Resources Laboratory, Silver Spring, MD.
18 Ellrod, G.P., B.H. Connell, and D.W. Hillger, 2003. Improved detection of airborne volcanic ash using multi-spectral infrared satellite data. J. Geophys. Res., 108(D12), DOI: 10.1029/2002JD002802.   DOI
19 ESA(European Space Agency), 2010. Ash plume of Eyjafjallajoekull volcano monitored, Science Daily, 22 Apr. 2010.
20 Francis, P.N., M.C. Cooke, and R.W. Saunders, 2012. Retrieval of physical properties of volcanic ash using Meteosat: A case study from the 2010 Eyjafjallajull eruption, J. Geophys. Res., 117, D00U09, doi:10.1029/2011JD016788.   DOI
21 Gasteiger, J., S. GroB, V. Freudenthaler, and M. Wiegner, 2011. Volcanic ash from Iceland over Munich: mass concentration retrieved from ground-based remote sensing measurements, Atmos. Chem. Phys., 11: 2209-2223, doi:10.5194/acp-11-2209-2011.   DOI
22 Hansen, J., A. Lacis, R. Ruedy, and M. Sato, 1992. Potential climate impact of Mount-Pinatubo eruption, Geophys. Res. Lett., 19(2): 215-218, doi:10.1029/91GL02788.   DOI
23 Horwell, C.J. and P.J. Baxter, 2006. The respiratory health hazards of volcanic ash: a review for volcanic risk mitigation,. Bulletin of Volcanology, 69: 1-24.   DOI
24 Heffter, J.L. and B.J. Stunder, 1993. Volcanic ash forecast transport and dispersion(VAFTAD) model, Wea Forecasting, 8: 534-541.
25 Kaufman, Y.J., D. Tanre, L.A. Remer, E.F. Vermote, D.A. Chu, and B.N. Holben, 1997. Operational remote sensing of tropospheric aerosol over the land from EOS-MODIS, J. Geophys. Res., 102: 17,051-17,061.   DOI
26 Heffter, J.L., B.J.B. Stunder, and G.D. Rolph, 1990. Long-range forecast trajectories of volcanic ash from Redoubt volcano eruptions, Bull. Amer. Meteor. Soc., 71(12): 1731-1738.   DOI
27 Kalnay, E., M. Kanamitsu, R. Kistler, W. Collins, D. Deaven, L. Gandin, M. Iredell, S. Saha, G. White, J. Woollen, Y. Zhu, A. Leetmaa, R. Reynolds, M. Chelliah, W. Ebisuzaki, W. Higgins, J. Janowiak, K. C. Mo, C. Ropelewski, J. Wang, R. Jenne, and D. Joseph, 1996. The NCEP/NCAR 40-year reanalysis project, Bull. Amer. Meteor. Soc., 77: 437-470.   DOI
28 Lee, D.H., K.H. Lee, and Y.J. Kim, 2006a. Application of MODIS Aerosol Data for Aerosol Type Classification, Korean J. of Remote Sensing, 22(6): 495-505 (in Korean with English abstract).   과학기술학회마을   DOI
29 Lee, D.H., K.H. Lee, and Y.J. Kim, 2006b. Atmospheric aerosol detection and its removal for satellite data, Korean J. of Remote Sensing, 22(5): 1-5.   DOI
30 Lee, K.H., C.S. Hong, and Y.J. Kim, 2004. Atmospheric Aerosol Monitoring Over Northeast Asia During 2001 from MODIS and TOMS data, Korean J. of Remote Sensing, 20(2): 77-89 (in Korean with English abstract).   과학기술학회마을   DOI
31 Lee, S.H., E.S. Jang, and H.M. Lee, 2012. A case analysis of volcanic ash dispersion under various volcanic explosivity index of the Mt. Baegdu. J. Korean Earth Sci. Soc., 33(3): 280-293 (in Korean with English abstract).   과학기술학회마을   DOI   ScienceOn
32 Lee, K.H., D.H. Lee, and Y.J. Kim, 2006. Application of MODIS satellite observation data for air quality forecast, J. of Korean Society for Atmospheric Environment, 22(6): 851-862 (in Korean with English abstract).   과학기술학회마을
33 Lee, S.H. and Yun, S.H. Yun, 2011. Impact of meteorological wind fields average on predicting volcanic tephra dispersion of Mt. Baekdu. J. Korean Earth Sci. Soc., 32(4): 360-372 (in Korean with English abstract).   과학기술학회마을   DOI
34 Pavolonis, M.J., W.F. Feltz, A.K. Heidinger, and G.M. Gallina, 2006. A daytime complement to the reverse absorption technique for improved automated detection of volcanic ash, J. Atmos. Oceanic Technol., 23: 1422-1444.   DOI   ScienceOn
35 Mastin, L.G., M. Guffanti, R. Servranckx, V. Webley, S. Barsotti, K. Dean, A. Durant, J.W. Ewert, A. Neri, W.I. Rose, D. Schneider, L. Siebert, B. Stunder, G. Swanson, A. Tupper, A. Volentik, and C.F. Waythomas, 2009. A multidisciplinary effort to assign realistic source parameters to models of volcanic ash-cloud transport and dispersion during eruptions, Journal of Volcanology and Geothermal Research, 186(1-2): 10-21.   DOI   ScienceOn
36 Osores, M.S., A. Folch, E. Collini, G. Villarosa, A. Durant, G. Pujol, and J.G. Viramonte, 2013. Validation of the FALL3D model for the 2008 Chaiten eruption using field and satellite data, Andean Geology, 40(2): 262-276, doi: 10.5027/andgeoV40n2-a05.   DOI
37 Prata, A.J., 1989a. Observations of volcanic ash clouds in the 10-12-micron window using AVHRR/2 Data, Int. J. Remote Sens., 10: 751-761.   DOI   ScienceOn
38 Heffter, J.L., 1996. Volcanic ash model verification using a Klyuchevskoi eruption, Geophy. Res. Letters, 23(12): 1489-1492.   DOI   ScienceOn