• Title/Summary/Keyword: infrared cameras

Search Result 203, Processing Time 0.023 seconds

Build a Multi-Sensor Dataset for Autonomous Driving in Adverse Weather Conditions (열악한 환경에서의 자율주행을 위한 다중센서 데이터셋 구축)

  • Sim, Sungdae;Min, Jihong;Ahn, Seongyong;Lee, Jongwoo;Lee, Jung Suk;Bae, Gwangtak;Kim, Byungjun;Seo, Junwon;Choe, Tok Son
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.3
    • /
    • pp.245-254
    • /
    • 2022
  • Sensor dataset for autonomous driving is one of the essential components as the deep learning approaches are widely used. However, most driving datasets are focused on typical environments such as sunny or cloudy. In addition, most datasets deal with color images and lidar. In this paper, we propose a driving dataset with multi-spectral images and lidar in adverse weather conditions such as snowy, rainy, smoky, and dusty. The proposed data acquisition system has 4 types of cameras (color, near-infrared, shortwave, thermal), 1 lidar, 2 radars, and a navigation sensor. Our dataset is the first dataset that handles multi-spectral cameras in adverse weather conditions. The Proposed dataset is annotated as 2D semantic labels, 3D semantic labels, and 2D/3D bounding boxes. Many tasks are available on our dataset, for example, object detection and driveable region detection. We also present some experimental results on the adverse weather dataset.

Water Detection in an Open Environment: A Comprehensive Review

  • Muhammad Abdullah, Sandhu;Asjad, Amin;Muhammad Ali, Qureshi
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.1
    • /
    • pp.1-10
    • /
    • 2023
  • Open surface water body extraction is gaining popularity in recent years due to its versatile applications. Multiple techniques are used for water detection based on applications. Different applications of Radar as LADAR, Ground-penetrating, synthetic aperture, and sounding radars are used to detect water. Shortwave infrared, thermal, optical, and multi-spectral sensors are widely used to detect water bodies. A stereo camera is another way to detect water and different methods are applied to the images of stereo cameras such as deep learning, machine learning, polarization, color variations, and descriptors are used to segment water and no water areas. The Satellite is also used at a high level to get water imagery and the captured imagery is processed using various methods such as features extraction, thresholding, entropy-based, and machine learning to find water on the surface. In this paper, we have summarized all the available methods to detect water areas. The main focus of this survey is on water detection especially in small patches or in small areas. The second aim of this survey is to detect water hazards for unmanned vehicles and off-sure navigation.

Analysis The Intensity of Weathering of The Rock Surface Using 3D Terrestrial Laser Scanner and Thermal Infrared Instrument (열적외선 기기와 3차원 레이저 스캐너를 이용한 암석 표면의 풍화강도 분석)

  • Lee, Soo-Gon;Cho, Hang-Kyo;Xu, Jing
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1324-1333
    • /
    • 2010
  • This paper is used in a recent civil engineering field in three-dimensional laser-meter tiles using thermal imaging cameras for the weathered rock slopes precisely measured indirectly, to the degree that began in the will. In the field is difficult to access the degree of weathering of the rock slope to the existing direct way to compensate for the shortcomings of 3D Terrestrial Laser Scanner and weathering characteristics of rocks using thermal imaging cameras to get the information to analyze the degree of rock weathering is. Intensity of 3D TLS and the thermal camera with image analysis to analyze the degree of weathering of bedrock in the field of core drilling targeting indoor laboratory tests were analyzed through the study. Granite, gneiss, sandstone, much of the cancerous samples, each experiment has a 40 per category, each of which 30 were used to analyze the data collected. That degree of rock weathering, the rock, depending on the strength of the Intensity values can change, depending on the level of thermal imaging camera, also weathered the changes in temperature could see. Intensity is the strength of weak rocks, the more value decrease, the temperature of the thermal imaging camera through the swell Intensity and notice that the temperature had an inverse relationship. Intensity value of the low strength of weak rock, but the value came out of the rocks have been proved to be largely dependent on the contrast. The contrast of the surface rocks are weathered dark Intensity values lower temperature to swell the contrary, the degree of weathering can be distinguished.

  • PDF

PRELIMINARY OPTICAL DESIGN OF MIRIS, MAIN PAYLOAD OF STSAT-3 (과학기술위성3호 주탑재체 MIRIS의 광학계 시험설계)

  • Yuk, I.S.;Jin, H.;Lee, S.;Park, Y.S.;Lee, D.H.;Nam, U.W.;Park, J.H.;Han, W.Y.;Lee, J.W.
    • Publications of The Korean Astronomical Society
    • /
    • v.22 no.4
    • /
    • pp.201-209
    • /
    • 2007
  • We have preliminarily designed two infrared optical systems of the multi-purpose infrared camera system (MIRIS) which is the main payload of STSAT-3. Each optical system consists of a Cassegrain telescope, a field lens and a 1:1 re-imaging lens system that is essential for providing a cold stop. The Cassegrain telescope is identical for both of two infrared cameras, but the field correction lens and re-imaging lens system are different from each other because of different bands of wavelength. The effective aperture size is 100mm in diameter and the focal ratio is f/5. The total length of the optical system is 300mm and the position of the cold stop is 25mm from the detector focal plane. The RMS spot size is smaller than $40{\mu}m$ over the whole detector plane.

Voice Assistant for Visually Impaired People (시각장애인을 위한 음성 도우미 장치)

  • Chae, Jun-Gy;Jang, Ji-Woo;Kim, Dong-Wan;Jung, Su-Jin;Lee, Ik Hyun
    • The Journal of Korean Institute of Information Technology
    • /
    • v.17 no.4
    • /
    • pp.131-136
    • /
    • 2019
  • People with compromised visual ability suffer from many inconveniences in daily life, such as distinguishing colors, identifying currency notes and realizing the atmospheric temperature. Therefore, to assist the visually impaired people, we propose a system by utilizing optical and infrared cameras. In the proposed system, an optical camera is used to collect features related to colors and currency notes while an infrared camera is utilized to get temperature information. The user is enabled to select the desired service by pushing the button and the appreciate voice information are provided through the speaker. The device can distinguish 16 kinds of colors, four different currency notes, and temperature information in four steps and the current accuracy is around 90%. It can be improved further through block-wise input image, machine learning, and a higher version of the infrared camera. In addition, it will be attached to the stick for easy carrying and to use it more conveniently.

Electrical conductivity and stealth characteristics of copper-sputtered clothing materials - Focusing on changes in the pore size of clothing materials - (구리 스퍼터링 의류소재의 전기전도성과 스텔스 특성 - 의류소재 기공 크기 변화를 중심으로 -)

  • Hye Ree Han
    • The Research Journal of the Costume Culture
    • /
    • v.31 no.1
    • /
    • pp.107-123
    • /
    • 2023
  • This research studied the electrical characteristics, IR transmission characteristics, stealth functions, and thermal characteristics of infrared thermal-imaging cameras of copper-sputtered samples. Nylon samples were prepared for each density as a base material for copper-sputtering treatment. Copper-sputtered NFi, NM1, NM2, NM3, NM4, and NM5, showed electrical resistance of 0.8, 445.7, 80.7, 29.7, 0.3, and 2.2 Ω, respectively, all of which are very low values; for the mesh sample, the lower the density, the lower the electrical resistance. Measuring the IR transmittance showed that the infrared transmittance of the copper-sputtered samples was significantly reduced compared to the untreated sample. Compared to the untreated samples, the transmittance went from 92.0-64.1%. When copper sputtered surface was directed to the IR irradiator, the IR transmittance went from 73.5 to 43.8%. As the density of the sample increased, the transmittance tended to decreased. After the infrared thermal imaging, the absolute values of △R, △G, and △B of the copper phase increased from 2 to 167, 98 to 192, and 7 to 118, respectively, and the closer the density of the sample (NM5→NFi), the larger the absolute value. This proves that the dense copper phase-up sample has a stealth effect on the infrared thermal imaging camera. It is believed that the copper-sputtered nylon samples produced in this study have applications in multifunctional uniforms, bio-signal detection sensors, stage costumes, etc.

INTELLIGENT MIRROR ADJUSTMENT SYSTEM USING A DRIVER′S PUPILS

  • Rho, K.H.;Han, M.H.
    • International Journal of Automotive Technology
    • /
    • v.5 no.4
    • /
    • pp.277-285
    • /
    • 2004
  • This paper describes an intelligent mirror adjustment system that rotates a pair of side mirrors and the room mirror of a car to the optimal position for a driver by using the location of the driver's pupils. A stereo vision system measures the three-dimensional coordinates of a pair of pupils by analyzing the input images of stereo B/W CCD cameras mounted on the instrument panel. This system determines the position angle of each mirror on the basis of information about the location of the pupils and rotates each mirror to the appropriate position by mirror actuators. The vision system can detect the driver's pupils regardless of whether it is daytime or nighttime by virtue of an infrared light source. Information about the pair of nostrils is used to improve the correctness of pupil detection. This system can adjust side mirrors and the room mirror automatically and rapidly by a simple interface regardless of driver replacement or driver's posture. Experiment has shown this to be a new mirror adjustment system that can make up for the weak points of previous mirror adjustment systems.

Design of a Safety Distance Securing System using Infrared cameras (적외선 카메라를 이용한 안전거리 확보 시스템 설계)

  • Seo, Sang-Hyun;Jung, Dong-Hun;Jang, Si-Woong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.329-332
    • /
    • 2015
  • 야간에 자동차를 운행할 때 검정색 차량 같은 어두운 색상의 자동차는 운전자가 인지를 못하는 경우가 많고 안개가 짙게 낀 상황도 운전자의 시야가 좁아져 교통사고율이 급격하게 증가한다. 도로교통공단의 자료에 의하면 최근 5년(2009~2013) 동안 가해자의 안전거리 미확보로 인한 교통사고는 매년 감소하는 것으로 나타나지만, 안전운전 의무 불이행 다음으로 두 번째로 높은 사고 건수를 기록하고 있다. 이는 아직도 운전자의 시인성 저하에 대한 방안이 부족하기 때문이다. 시인성 저하를 위한 대책으로 BMW, AUDI, Benz 회사에서 적외선 카메라를 이용한 나이트 비젼이 있으나 거리감지기능이 없어 디스플레이를 계속 주시하면서 운행하여야 하므로 시야가 좁아져 다른 위험이 발생할 수 있다. 현재 시중에 제공되고 있는 적외선 나이트 비젼 카메라를 이용하였을 때 일반 시야보다 약 4배 정도의 거리를 인식할 수 있었고, 이러한 나이트 비젼의 장점을 활용하여 전면 차량과의 안전거리를 확보하는 시스템을 제안한다. 본 논문에서는 제시하는 시스템은 시인성이 떨어지는 환경을 가정하여 설계하였고 나이트 비젼 카메라를 이용해 디스플레이로 출력하여 육안으로 구분할 수 없는 물체도 인지할 수 있어 헤드라이트를 켜고 운행할 때보다 안전한 운행을 할 수 있을 것으로 보인다. 하지만 디스플레이를 지속적으로 주시하며 운행할 경우 거리 감각이 떨어져 근접해 오는 물체와의 충돌 사고를 막기 힘들 것으로 보인다. 따라서 이러한 단점을 보안하기 위해 영상 데이터를 활용하여 앞 차량의 유무를 파악하고 차량이 있을 때 안전거리를 디스플레이에 표시함으로 앞 차량과의 거리를 유지하여 사고를 예방하여 안전 운행이 가능하도록 설계하였다.

  • PDF

Automatic Mirror Adjustment Systems Using the Location of the Driver`s Pupils (운전자 눈동자 위치를 이용한 이러 자동 조절 시스템)

  • No, Gwang-Hyeon;Park, Gi-Hyeon;Jo, Jun-Su;Han, Min-Hong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.6
    • /
    • pp.523-531
    • /
    • 2001
  • This paper describes and automatic mirror adjustment system that rotates a pair of side mirrors and the room mirror of a car to the optimal position for a driver by using the locating of the driver\`s pupils. A stereo vision system measures 3D coordinates of a pair pupils by analyzing the input images of stereo B/W CCD cameras mounted on the instrument panel. this system determines the position angle of each mir-ror on the basis of information about the location of the pupils and rotates each mirror to the appropriate po-sition by mirror actuators. The vision system can detect the driver\`s pupils regardless of whether it is day-time or nighttime by virtue of an infrared light source. information about the pair of nostrils in used to im- prove the correctness of pupil detection. This system can adjust side mirrors and the room mirror automati- cally and rapidly by a simple interface regardless of driver replacement of driver\`s posture. Experiment has shown this to be a new mirror adjustment system that can make up for the weak points of previous mirror adjustment systems.

  • PDF

Selecting Significant Wavelengths to Predict Chlorophyll Content of Grafted Cucumber Seedlings Using Hyperspectral Images

  • Jang, Sung Hyuk;Hwang, Yong Kee;Lee, Ho Jun;Lee, Jae Su;Kim, Yong Hyeon
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.4
    • /
    • pp.681-692
    • /
    • 2018
  • This study was performed to select the significant wavelengths for predicting the chlorophyll content of grafted cucumber seedlings using hyperspectral images. The visible and near-infrared (VNIR) images and the short-wave infrared images of cucumber cotyledon samples were measured by two hyperspectral cameras. A correlation coefficient spectrum (CCS), a stepwise multiple linear regression (SMLR), and partial least squares (PLS) regression were used to determine significant wavelengths. Some wavelengths at 501, 505, 510, 543, 548, 619, 718, 723, and 727 nm were selected by CCS, SMLR, and PLS as significant wavelengths for estimating chlorophyll content. The results from the calibration models built by SMLR and PLS showed fair relationship between measured and predicted chlorophyll concentration. It was concluded that the hyperspectral imaging technique in the VNIR region is suggested effective for estimating the chlorophyll content of grafted cucumber leaves, non-destructively.