DOI QR코드

DOI QR Code

Water Detection in an Open Environment: A Comprehensive Review

  • Muhammad Abdullah, Sandhu (Department of Information and Communication Engineering, The Islamia University of Bahawalpur) ;
  • Asjad, Amin (Department of Information and Communication Engineering, The Islamia University of Bahawalpur) ;
  • Muhammad Ali, Qureshi (Department of Information and Communication Engineering, The Islamia University of Bahawalpur)
  • Received : 2023.01.05
  • Published : 2023.01.30

Abstract

Open surface water body extraction is gaining popularity in recent years due to its versatile applications. Multiple techniques are used for water detection based on applications. Different applications of Radar as LADAR, Ground-penetrating, synthetic aperture, and sounding radars are used to detect water. Shortwave infrared, thermal, optical, and multi-spectral sensors are widely used to detect water bodies. A stereo camera is another way to detect water and different methods are applied to the images of stereo cameras such as deep learning, machine learning, polarization, color variations, and descriptors are used to segment water and no water areas. The Satellite is also used at a high level to get water imagery and the captured imagery is processed using various methods such as features extraction, thresholding, entropy-based, and machine learning to find water on the surface. In this paper, we have summarized all the available methods to detect water areas. The main focus of this survey is on water detection especially in small patches or in small areas. The second aim of this survey is to detect water hazards for unmanned vehicles and off-sure navigation.

Keywords

References

  1. S. S. Mekala, "Research of water detection in autonomous vehicles," 2019.
  2. S. Bolanos, D. Stiff, B. Brisco, and A. Pietroniro, "Operational surface water detection and monitoring using Radarsat 2," Remote Sens., vol. 8, no. 4, p. 285, 2016.
  3. A. Rohani, I. Zamree, H. L. Lee, I. Mustafakamal, M. J. Norjaiza, and D. Kamilan, "Detection of transovarial dengue virus from field-caught Aedes aegypti and Ae. albopictus larvae using C6," Dengue Bull., vol. 31, 2007, Accessed: Nov. 17, 2021. [Online]. Available: https://apps.who.int/iris/handle/10665/170453 10665/170453
  4. M. Koetse, P. R.-T. R. P. D. T. and, and undefined 2009, "The impact of climate change and weather on transport: An overview of empirical findings," Elsevier, Accessed: Jan. 13, 2023. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S136192090800165X
  5. "Snow & Ice - FHWA Road Weather Management." https://ops.fhwa.dot.gov/weather/weather_events/snow_ice.htm (accessed Jan. 13, 2023).
  6. A. Rankin, L. M.-2010 I. International, and undefined 2010, "Daytime water detection based on color variation," ieeexplore.ieee.org, Accessed: Jan. 13, 2023. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/5650402/
  7. A. L. Rankin, L. H. Matthies, and A. Huertas, "DAYTIME WATER DETECTION BY FUSING MULTIPLE CUES FOR AUTONOMOUS OFF-ROAD NAVIGATION," pp. 177-184, Nov. 2006, doi: 10.1142/9789812772572_0023.
  8. T. Yao, Z. Xiang, J. Liu, D. X.-2007 I. C. on, and undefined 2007, "Multi-feature fusion based outdoor water hazards detection," ieeexplore.ieee.org, Accessed: Jan. 13, 2023. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/4303620/ https://ieeexplore.ieee.org/abstract/document/4303620/
  9. M. Riehm, T. Gustavsson, … J. B.-C. R. S. and, and U. 2012, "Ice formation detection on road surfaces using infrared thermometry," Cold Reg. Sci. Technol. Elsevier, vol. 83, pp. 71-76, 2012. https://doi.org/10.1016/j.coldregions.2012.06.004
  10. R. Finkele, "Detection of ice layers on road surfaces using a polarimetric millimeter wave sensor at 76 GHz," Electron. Lett., vol. 33, no. 13, pp. 1153-1154, 1997. https://doi.org/10.1049/el:19970789
  11. P. Jonsson, Remote sensor for winter road surface status detection. IEEE, 2011.
  12. T. Huntsberger, H. Aghazarian, A. Howard, and D. C. Trotz, "Stereo vision--based navigation for autonomous surface vessels," J. F. Robot., vol. 28, no. 1, pp. 3-18, 2011. https://doi.org/10.1002/rob.20380
  13. R. Larson, Jacoby and Bruch, Michael and Halterman, Ryan and Rogers, John and Webster, "Advances in autonomous obstacle avoidance for unmanned surface vehicles," 2007.
  14. F. L. Hellweger, P. Schlosser, U. Lall, and J. K. Weissel, "Use of satellite imagery for water quality studies in New York Harbor," Estuar. Coast. Shelf Sci., vol. 61, no. 3, pp. 437-448, 2004. https://doi.org/10.1016/j.ecss.2004.06.019
  15. B. Brisco, R. Touzi, J. J. van der Sanden, F. Charbonneau, T. J. Pultz, and M. D'Iorio, "Water resource applications with RADARSAT-2--a preview," Int. J. Digit. Earth, vol. 1, no. 1, pp. 130-147, 2008. https://doi.org/10.1080/17538940701782577
  16. S. Li, Junhua and Wang, "An automatic method for mapping inland surface waterbodies with Radarsat-2 imagery," Int. J. Remote Sens., vol. 36, no. 5, pp. 1367-1384, 2015. https://doi.org/10.1080/01431161.2015.1009653
  17. J. Khan, I. Khan, and I. Amin, "A comprehensive entomological, serological and molecular study of 2013 dengue outbreak of swat, Khyber Pakhtunkhwa, Pakistan," PLoS One, 2016, doi: 10.1371/journal.pone.0147416.
  18. "Water quality characteristics of dengue vectors breeding containers," Int. J. Mosq. Res., 2016.
  19. Y. Ferdousi, Farhana and Yoshimatsu, Shoji and Ma, Enbo and Sohel, Nazmul and Wagatsuma, "Identification of essential containers for Aedes larval breeding to control dengue in Dhaka, Bangladesh," Trop. Med. Health, 2015.
  20. J. A. Huisman, S. S. Hubbard, J. D. Redman, and A. P. Annan, "Measuring soil water content with ground penetrating radar: A review," Vadose Zo. J., vol. 2, no. 4, pp. 476-491, 2003. https://doi.org/10.2113/2.4.476
  21. M. Gerhards, M. Schlerf, K. Mallick, and T. Udelhoven, "Challenges and future perspectives of multi-/Hyperspectral thermal infrared remote sensing for crop water-stress detection: A review," Remote Sens., vol. 11, no. 10, p. 1240, 2019.
  22. T. V. Bijeesh and K. N. Narasimhamurthy, "Surface water detection and delineation using remote sensing images: a review of methods and algorithms," Sustain. Water Resour. Manag., vol. 6, no. 4, Aug. 2020, doi: 10.1007/S40899-020-00425-4.
  23. R. K. Nath and S. K. Deb, "Water-body area extraction from high resolution satellite images-an introduction, review, and comparison," Int. J. Image Process., vol. 3, no. 6, pp. 265-384, 2010.
  24. M. Iqbal, M. Morel, and F. Meriaudeau, "A survey on outdoor water hazard detection," Skripsi Progr. Stud. Siste Inf., 2009.
  25. L. H. Matthies, P. Bellutta, and M. McHenry, "Detecting water hazards for autonomous off-road navigation," in Unmanned Ground Vehicle Technology V, 2003, vol. 5083, pp. 231-242.
  26. A. Sekertekin, "A survey on global thresholding methods for mapping open water body using Sentinel-2 satellite imagery and normalized difference water index," Arch. Comput. Methods Eng., vol. 28, no. 3, pp. 1335-1347, 2021. https://doi.org/10.1007/s11831-020-09416-2
  27. A. Sarwal, D. Simon, and V. Rajagopalan, "Terrain classification," in Unmanned Ground Vehicle Technology V, 2003, vol. 5083, pp. 156-163.
  28. L. Matthies, C. Bergh, A. Castano, J. Macedo, and R. Manduchi, "Obstacle detection in foliage with ladar and radar," in Robotics Research. The Eleventh International Symposium, 2005, pp. 291-300.
  29. W. S. Wijesoma, K. R. S. Kodagoda, and A. P. Balasuriya, "Road-boundary detection and tracking using ladar sensing," IEEE Trans. Robot. Autom., vol. 20, no. 3, pp. 456-464, 2004. https://doi.org/10.1109/TRA.2004.825269
  30. J. J. Daniels, R. Roberts, and M. Vendl, "Ground penetrating radar for the detection of liquid contaminants," J. Appl. Geophys., vol. 33, no. 1-3, pp. 195-207, 1995. https://doi.org/10.1016/0926-9851(95)90041-1
  31. A. Klotzsche, F. Jonard, M. C. Looms, J. van der Kruk, and J. A. Huisman, "Measuring soil water content with ground penetrating radar: A decade of progress," Vadose Zo. J., vol. 17, no. 1, pp. 1-9, 2018. https://doi.org/10.2136/vzj2018.03.0052
  32. J. A. Huisman, C. Sperl, W. Bouten, and J. M. Verstraten, "Soil water content measurements at different scales: accuracy of time domain reflectometry and ground-penetrating radar," J. Hydrol., vol. 245, no. 1-4, pp. 48-58, 2001. https://doi.org/10.1016/S0022-1694(01)00336-5
  33. A. P. Annan, S. W. Cosway, and J. D. Redman, "Water table detection with ground-penetrating radar," in SEG Technical Program Expanded Abstracts 1991, Society of Exploration Geophysicists, 1991, pp. 494-496.
  34. C. Medina, J. Gomez-Enri, J. J. Alonso, and P. Villares, "Water volume variations in Lake Izabal (Guatemala) from in situ measurements and ENVISAT Radar Altimeter (RA-2) and Advanced Synthetic Aperture Radar (ASAR) data products," J. Hydrol., vol. 382, no. 1-4, pp. 34-48, 2010. https://doi.org/10.1016/j.jhydrol.2009.12.016
  35. M. R. Rahman and P. K. Thakur, "Detecting, mapping and analysing of flood water propagation using synthetic aperture radar (SAR) satellite data and GIS: A case study from the Kendrapara District of Orissa State of India," Egypt. J. Remote Sens. Sp. Sci., vol. 21, pp. S37--S41, 2018. https://doi.org/10.1016/j.ejrs.2017.10.002
  36. D. C. Mason, I. J. Davenport, J. C. Neal, G. J.-P. Schumann, and P. D. Bates, "Near real-time flood detection in urban and rural areas using high-resolution synthetic aperture radar images," IEEE Trans. Geosci. Remote Sens., vol. 50, no. 8, pp. 3041-3052, 2012. https://doi.org/10.1109/TGRS.2011.2178030
  37. A. Behnamian et al., "Semi-automated surface water detection with synthetic aperture radar data: A wetland case study," Remote Sens., vol. 9, no. 12, p. 1209, 2017.
  38. R. S. Westerhoff, M. P. H. Kleuskens, H. C. Winsemius, H. J. Huizinga, G. R. Brakenridge, and C. Bishop, "Automated global water mapping based on wide-swath orbital synthetic-aperture radar," Hydrol. Earth Syst. Sci., vol. 17, no. 2, pp. 651-663, 2013. https://doi.org/10.5194/hess-17-651-2013
  39. E. Heggy et al., "ON SOUNDING RADAR PERFORMANCES FOR MARTIAN SUBSURFACE WATER DETECTION.," in Conference on the Geophysical Detection of Subsurface Water on Mars, 2001, p. 47.
  40. E. Heggy, P. Paillou, G. Ruffie, J. M. Malezieux, F. Costard, and G. Grandjean, "On water detection in the Martian subsurface using sounding radar," Icarus, vol. 154, no. 2, pp. 244-257, 2001. https://doi.org/10.1006/icar.2001.6717
  41. E. Heggy et al., "Local geoelectrical models of the Martian subsurface for shallow groundwater detection using sounding radars," J. Geophys. Res. Planets, vol. 108, no. E4, 2003.
  42. D. A. Young, D. M. Schroeder, D. D. Blankenship, S. D. Kempf, and E. Quartini, "The distribution of basal water between Antarctic subglacial lakes from radar sounding," Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., vol. 374, no. 2059, p. 20140297, 2016.
  43. M. Sadeghi, S. B. Jones, and W. D. Philpot, "A linear physically-based model for remote sensing of soil moisture using short wave infrared bands," Remote Sens. Environ., vol. 164, pp. 66-76, 2015. https://doi.org/10.1016/j.rse.2015.04.007
  44. T. Benabdelouahab, R. Balaghi, R. Hadria, H. Lionboui, J. Minet, and B. Tychon, "Monitoring surface water content using visible and short-wave infrared SPOT-5 data of wheat plots in irrigated semi-arid regions," Int. J. Remote Sens., vol. 36, no. 15, pp. 4018-4036, 2015. https://doi.org/10.1080/01431161.2015.1072650
  45. R. E. Kumar, G. Von Gastrow, J. Leslie, R. Meier, M. I. Bertoni, and D. P. Fenning, "Quantitative determination of moisture content in solar modules by short-wave infrared reflectometry," IEEE J. Photovoltaics, vol. 9, no. 6, pp. 1748-1753, 2019. https://doi.org/10.1109/jphotov.2019.2938108
  46. S. Li, D. Sun, Y. Yu, I. Csiszar, A. Stefanidis, and M. D. Goldberg, "A new short-wave infrared (SWIR) method for quantitative water fraction derivation and evaluation with EOS/MODIS and Landsat/TM data," IEEE Trans. Geosci. Remote Sens., vol. 51, no. 3, pp. 1852-1862, 2012.
  47. T. Roper, J. Greskowiak, and G. Massmann, "Detecting small groundwater discharge springs using handheld thermal infrared imagery," Groundwater, vol. 52, no. 6, pp. 936-942, 2014. https://doi.org/10.1111/gwat.12145
  48. M. D. Nellis, "Application of thermal infrared imagery to canal leakage detection," Remote Sens. Environ., vol. 12, no. 3, pp. 229-234, 1982. https://doi.org/10.1016/0034-4257(82)90055-4
  49. D. G. Sullivan, J. P. Fulton, J. N. Shaw, and G. Bland, "Evaluating the sensitivity of an unmanned thermal infrared aerial system to detect water stress in a cotton canopy," Trans. ASABE, vol. 50, no. 6, pp. 1963-1969, 2007. https://doi.org/10.13031/2013.24091
  50. W. S. L. Banks, R. L. Paylor, and W. B. Hughes, "Using Thermal-Infrared Imagery to Delineate Ground-Water Discharge d," Groundwater, vol. 34, no. 3, pp. 434-443, 1996. https://doi.org/10.1111/j.1745-6584.1996.tb02024.x
  51. C. Huang, Y. Chen, S. Zhang, and J. Wu, "Detecting, extracting, and monitoring surface water from space using optical sensors: A review," Rev. Geophys., vol. 56, no. 2, pp. 333-360, 2018. https://doi.org/10.1029/2018RG000598
  52. M. M. Islam and K. Sado, "Development of flood hazard maps of Bangladesh using NOAA-AVHRR images with GIS," Hydrol. Sci. J., vol. 45, no. 3, pp. 337-355, 2000. https://doi.org/10.1080/02626660009492334
  53. L. Nyborg and I. Sandholt, "NOAA-AVHRR based flood monitoring," in IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No. 01CH37217), 2001, vol. 4, pp. 1696-1698.
  54. Y. Sheng, P. Gong, and Q. Xiao, "Quantitative dynamic flood monitoring with NOAA AVHRR," Int. J. Remote Sens., vol. 22, no. 9, pp. 1709-1724, 2001. https://doi.org/10.1080/01431160118481
  55. D. Peng, L. Xiong, S. Guo, and N. Shu, "Study of Dongting Lake area variation and its influence on water level using MODIS data/Etude de la variation de la surface du Lac Dongting et de son influence sur le niveau d'eau, grace a des donnees MODIS," Hydrol. Sci. J., vol. 50, no. 1, 2005.
  56. R. Brakenridge and E. Anderson, "MODIS-based flood detection, mapping and measurement: the potential for operational hydrological applications," in Transboundary floods: reducing risks through flood management, Springer, 2006, pp. 1-12.
  57. Y. Chen, C. Huang, C. Ticehurst, L. Merrin, and P. Thew, "An evaluation of MODIS daily and 8-day composite products for floodplain and wetland inundation mapping," Wetlands, vol. 33, no. 5, pp. 823-835, 2013. https://doi.org/10.1007/s13157-013-0439-4
  58. Z. Du et al., "Analysis of Landsat-8 OLI imagery for land surface water mapping," Remote Sens. Lett., vol. 5, no. 7, pp. 672-681, 2014. https://doi.org/10.1080/2150704X.2014.960606
  59. L. Ji, X. Geng, K. Sun, Y. Zhao, and P. Gong, "Target detection method for water mapping using Landsat 8 OLI/TIRS imagery," Water, vol. 7, no. 2, pp. 794-817, 2015. https://doi.org/10.3390/w7020794
  60. Y. Yang et al., "Landsat 8 OLI image based terrestrial water extraction from heterogeneous backgrounds using a reflectance homogenization approach," Remote Sens. Environ., vol. 171, pp. 14-32, 2015. https://doi.org/10.1016/j.rse.2015.10.005
  61. K. E. Sawaya, L. G. Olmanson, N. J. Heinert, P. L. Brezonik, and M. E. Bauer, "Extending satellite remote sensing to local scales: land and water resource monitoring using high-resolution imagery," Remote Sens. Environ., vol. 88, no. 1-2, pp. 144-156, 2003. https://doi.org/10.1016/j.rse.2003.04.006
  62. F. Yao, C. Wang, D. Dong, J. Luo, Z. Shen, and K. Yang, "High-resolution mapping of urban surface water using ZY-3 multi-spectral imagery," Remote Sens., vol. 7, no. 9, pp. 12336-12355, 2015. https://doi.org/10.3390/rs70912336
  63. K. Xu, J. Zhang, M. Watanabe, and C. Sun, "Estimating river discharge from very high-resolution satellite data: a case study in the Yangtze River, China," Hydrol. Process., vol. 18, no. 10, pp. 1927-1939, 2004. https://doi.org/10.1002/hyp.1458
  64. R. C. Sidle, A. D. Ziegler, and J. B. Vogler, "Contemporary changes in open water surface area of Lake Inle, Myanmar," Sustain. Sci., vol. 2, no. 1, pp. 55-65, 2007. https://doi.org/10.1007/s11625-006-0020-7
  65. N. Li, A. Martin, and R. Estival, "An automatic water detection approach based on Dempster-Shafer theory for multi-spectral images," in 2017 20th International Conference on Information Fusion (Fusion), 2017, pp. 1-8.
  66. F. Yang, J. Guo, H. Tan, and J. Wang, "Automated extraction of urban water bodies from ZY-3 Multi-Spectral imagery," Water, vol. 9, no. 2, p. 144, 2017.
  67. Y. Zhao, Y. Deng, C. Pan, L. G.-S. & Transducers, and U. 2013, "Research of water hazard detection based on color and texture features," sensorsportal.com.
  68. A. Billah, A. Abdenbi, D. A.-2018 9th International, and U. 2018, "Detection of water-risk zones based on color and texture in home video surveillance," ieeexplore.ieee.org, pp. 168-173, 2018.
  69. P. Santana, ... R. M.-2012 I. international, and U. 2012, "Water detection with segmentation guided dynamic texture recognition," ieeexplore.ieee.org, pp. 1836-1841, 2012.
  70. P. Mettes, R. Tan, R. V.-C. V. and Image, and U. 2017, "Water detection through spatio-temporal invariant descriptors," Elsevier, vol. 154, pp. 182-191, 2017.
  71. H. Wang, M. M. Ullah, A. Klaser, I. Laptev, and C. Schmid, "Evaluation of local spatio-temporal features for action recognition," hal.inria.fr, p. 124, 2009, doi: 10.5244/C.23.124i.
  72. Y. Deng et al., "Spatio-temporal change of lake water extent in Wuhan urban agglomeration based on Landsat images from 1987 to 2015," mdpi.com, vol. 9, p. 270, 2017.
  73. C. Huang, Y. Chen, … J. W.-J. of A. E. O. and, and U. 2014, "Mapping spatio-temporal flood inundation dynamics at large river basin scale using time-series flow data and MODIS imagery," Elsevier, vol. 26, pp. 350-362, 2014. https://doi.org/10.1016/j.jag.2013.09.002
  74. D. Carstens, R. A.-J. of Hydrology, and U. 2019, "Spatiotemporal analysis of urban changes and surface water quality," Elsevier, vol. 569, pp. 720-734, 2019.
  75. A. Rankin, ... L. M.-2011 I. I., and U. 2011, "Daytime water detection based on sky reflections," ieeexplore.ieee.org, pp. 5329-5336, 2011.
  76. A. Rankin, T. Ivanov, and S. Brennan, "Evaluating the performance of unmanned ground vehicle water detection," in Proceedings of the 10th Performance Metrics for Intelligent Systems Workshop, 2010, pp. 305-311.
  77. T. Wang, M. Liu, Y. W.-M. R. Bulletin, and U. 2017, "Color-tunable luminescent Ln3+ composite as self-referencing and ratiometric sensor for low-level water detection in ethanol," Elsevier, vol. 95, pp. 426-430, 2017.
  78. B. Xie, H. Pan, Z. Xiang, J. L.-2007 I. C. On, and U. 2007, "Polarization-based water hazards detection for autonomous off-road navigation," ieeexplore.ieee.org, pp. 1666-1670, 2007.
  79. H. Wu, M. Zhao, F. Li, Z. Tian, and M. Zhao, "Underwater polarization-based single pixel imaging," J. Soc. Inf. Disp., vol. 28, no. 2, pp. 157-163, 2020. https://doi.org/10.1002/jsid.838
  80. G. Horvath, M. Blaho, A. Egri, and A. Lerner, "Applying polarization-based traps to insect control," in Polarized light and polarization vision in animal sciences, Springer, 2014, pp. 561-584.
  81. F. Liu et al., "Polarization-based exploration for clear underwater vision in natural illumination," osapublishing.org, vol. 27, pp. 3629- 3641, 2019, Accessed: Nov. 23, 2021. [Online]. Available: https://www.osapublishing.org/abstract.cfm?uri=oe-27-3-3629 https://doi.org/10.1364/OE.27.003629
  82. J. Kim, J. Baek, H. Choi, E. K.-J. of Control, A. and Systems, and U. 2016, "Wet area and puddle detection for Advanced Driver Assistance Systems (ADAS) using a stereo camera," Springer, vol. 14, pp. 263-271, 2016, Accessed: Nov. 23, 2021. [Online]. Available: https://link.springer.com/content/pdf/10.1007/s12555-015-0024-0.pdf
  83. A. K. Patel, S. Chatterjee, and A. K. Gorai, "Effect on the Performance of a Support Vector Machine Based Machine Vision System with Dry and Wet Ore Sample Images in Classification and Grade Prediction," Pattern Recognit. Image Anal., vol. 29, no. 2, pp. 309-324, Apr. 2019, doi: 10.1134/S1054661819010097.
  84. A. Salam, M. Tola, ... M. S.-2014 M., and U. 2014, "A leakage detection system on the water pipe network through support vector machine method," ieeexplore.ieee.org, pp. 161-165, 2014, Accessed: Nov. 23, 2021. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/7067331/
  85. J. Mashford, D. De Silva, ... D. M.-2009 T. I., and U. 2009, "An approach to leak detection in pipe networks using analysis of monitored pressure values by support vector machine," in ieeexplore.ieee.org, 2009, pp. 534-539. Accessed: Nov. 23, 2021. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/5319304/
  86. A. Hipni, A. El-shafie, A. Najah, O. A. Karim, A. Hussain, and M. Mukhlisin, "Daily Forecasting of Dam Water Levels: Comparing a Support Vector Machine (SVM) Model With Adaptive Neuro Fuzzy Inference System (ANFIS)," Water Resour. Manag., vol. 27, no. 10, pp. 3803-3823, 2013, doi: 10.1007/S11269-013-0382-4.
  87. D. Jalal, T. E.-2020 I. Wireless, and U. 2020, "Decision Tree and Support Vector Machine for Anomaly Detection in Water Distribution Networks," in ieeexplore.ieee.org, 2020, pp. 1320-1323. Accessed: Nov. 23, 2021. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/9148431/
  88. D. Moshou, X. Pantazi, D. Kateris, I. G.-B. Engineering, and U. 2014, "Water stress detection based on optical multisensor fusion with a least squares support vector machine classifier," Elsevier, vol. 117, pp. 15-22, 2014, Accessed: Nov. 23, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1537511013001153 1013001153
  89. J. Alonso, J. Lopez, I. Pavon, M. Recuero, C. A.-A. Acoustics, and U. 2014, "On-board wet road surface identification using tyre/road noise and support vector machines," Elsevier, vol. 76, pp. 407-415, 2014, Accessed: Nov. 23, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0003682X13002272 https://doi.org/10.1016/j.apacoust.2013.09.011
  90. J. Chen, D. L.-A. E. Informatics, and U. 2021, "Bottom-up image detection of water channel slope damages based on superpixel segmentation and support vector machine," Elsevier, vol. 47, p. 101205, 2021, Accessed: Nov. 23, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1474034620301749
  91. Q. Qiao, Jian-Jun and Wu, Xiao and He, Jun-Yan and Li, Wei and Peng, "SWNet: A Deep Learning Based Approach for Splashed Water Detection on Road," IEEE Trans. Intell. Transp. Syst., 2020.
  92. I. Abdic, L. Fridman, D. Brown, ... W. A.-2016 23rd, and U. 2016, "Detecting road surface wetness from audio: A deep learning approach," in ieeexplore.ieee.org, 2016, pp. 3458-3463. Accessed: Nov. 24, 2021. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/7900169/
  93. X. Han, C. Nguyen, S. You, J. L.-P. of The, and U. 2018, "Single image water hazard detection using fcn with reflection attention units," in openaccess.thecvf.com, 2018, pp. 105-120. Accessed: Nov. 24, 2021. [Online]. Available: http://openaccess.thecvf.com/content_ECCV_2018/html/Xiaofeng_Han_Single_Image_Water_ECCV_2018_paper.html
  94. J. Li, C. Nguyen, S. Y.-2019 D. I. Computing, and U. 2019, "Temporal 3D Fully Connected Network for Water-Hazard Detection," in ieeexplore.ieee.org, 2019, pp. 1-5. Accessed: Nov. 24, 2021. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/8945849/
  95. L. Wang, H. W.-I. Access, and U. 2019, "Water Hazard Detection Using Conditional Generative Adversarial Network With Mixture Reflection Attention Units," ieeexplore.ieee.org, vol. 7, pp. 167497- 167506, 2019, Accessed: Nov. 24, 2021. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/8902093/
  96. L. Chen et al., "A Multi-Scale Deep Neural Network for Water Detection from SAR Images in the Mountainous Areas," mdpi.com, vol. 12, p. 3205, 2020.
  97. M. He, B. Li, H. C.-2017 I. I. C. On, and U. 2017, "Multiscale 3D deep convolutional neural network for hyperspectral image classification," in ieeexplore.ieee.org, 2017, pp. 3904-3908. Accessed: Nov. 24, 2021. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/8297014/
  98. M. Colet, A. Braun, I. M.-P. of 24th, and U. 2016, "A new approach to turbid water surface identification for autonomous navigation," 2016. Accessed: Nov. 24, 2021. [Online]. Available: https://repositorio.pucrs.br/dspace/bitstream/10923/13809/2/A_new_approach_to_turbid_water_surface_identification_for_autonomous_navigation.pdf
  99. H. Chen et al., "A deep learning CNN architecture applied in smart near-infrared analysis of water pollution for agricultural irrigation resources," Elsevier, vol. 240, p. 106303, 2020, Accessed: Nov. 24, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0378377420307642
  100. K. Rokni, A. Ahmad, A. Selamat, and S. Hazini, "Water feature extraction and change detection using multitemporal Landsat imagery," Remote Sens., vol. 6, no. 5, pp. 4173-4189, 2014. https://doi.org/10.3390/rs6054173
  101. U. N. T. Nguyen, L. T. H. Pham, and T. D. Dang, "An automatic water detection approach using Landsat 8 OLI and Google Earth Engine cloud computing to map lakes and reservoirs in New Zealand," Environ. Monit. Assess., vol. 191, no. 4, pp. 1-12, 2019. https://doi.org/10.1007/s10661-018-7122-4
  102. A. T. Assaf, K. N. Sayl, and A. Adham, "Surface Water Detection Method for Water Resources Management," in Journal of Physics: Conference Series, 2021, vol. 1973, no. 1, p. 12149.
  103. X. Yang, Q. Qin, P. Grussenmeyer, and M. Koehl, "Urban surface water body detection with suppressed built-up noise based on water indices from Sentinel-2 MSI imagery," Remote Sens. Environ., vol. 219, pp. 259-270, 2018. https://doi.org/10.1016/j.rse.2018.09.016
  104. L.-K. Huang and M.-J. J. Wang, "Image thresholding by minimizing the measures of fuzziness," Pattern Recognit., vol. 28, no. 1, pp. 41-51, 1995. https://doi.org/10.1016/0031-3203(94)E0043-K
  105. J. M. S. Prewitt and M. L. Mendelsohn, "The analysis of cell images," Ann. N. Y. Acad. Sci., vol. 128, no. 3, pp. 1035-1053, 1966. https://doi.org/10.1111/j.1749-6632.1965.tb11715.x
  106. T. W. Ridler, S. Calvard, and others, "Picture thresholding using an iterative selection method," IEEE trans syst Man Cybern, vol. 8, no. 8, pp. 630-632, 1978. https://doi.org/10.1109/TSMC.1978.4310039
  107. J. N. Kapur, P. K. Sahoo, and A. K. C. Wong, "Compute Vision, Graphics," Image Process., vol. 29, p. 273, 1985.
  108. C. A. Glasbey, "An analysis of histogram-based thresholding algorithms," CVGIP Graph. Model. image Process., vol. 55, no. 6, pp. 532-537, 1993. https://doi.org/10.1006/cgip.1993.1040
  109. P. Sahoo, C. Wilkins, and J. Yeager, "Threshold selection using Renyi's entropy," Pattern Recognit., vol. 30, no. 1, pp. 71-84, 1997. https://doi.org/10.1016/S0031-3203(96)00065-9
  110. J. Kittler and J. Illingworth, "Minimum error thresholding," Pattern Recognit., vol. 19, no. 1, pp. 41-47, 1986. https://doi.org/10.1016/0031-3203(86)90030-0
  111. A. Aalan Babu and V. Mary Anita Rajam, "Water-body segmentation from satellite images using Kapur's entropy-based thresholding method," Comput. Intell., vol. 36, no. 3, pp. 1242-1260, 2020. https://doi.org/10.1111/coin.12339
  112. P. Horkaew and S. Puttinaovarat, "Entropy-based fusion of water indices and DSM derivatives for automatic water surfaces extraction and flood monitoring," ISPRS Int. J. Geo-Information, vol. 6, no. 10, p. 301, 2017.
  113. T. Maruyama, T. Kawachi, and V. P. Singh, "Entropy-based assessment and clustering of potential water resources availability," J. Hydrol., vol. 309, no. 1-4, pp. 104-113, 2005. https://doi.org/10.1016/j.jhydrol.2004.11.020
  114. Y. Jin, W. Yumei, and L. Ping, "Approximate entropy-based leak detection using artificial neural network in water distribution pipelines," in 2010 11th International Conference on Control Automation Robotics & Vision, 2010, pp. 1029-1034.
  115. R. Liu et al., "Integrating entropy-based na{\"\i}ve Bayes and GIS for spatial evaluation of flood hazard," Risk Anal., vol. 37, no. 4, pp. 756-773, 2017. https://doi.org/10.1111/risa.12698
  116. R. I. Jony, A. Woodley, A. Raj, and D. Perrin, "Ensemble classification technique for water detection in satellite images," in 2018 Digital Image Computing: Techniques and Applications (DICTA), 2018, pp. 1-8.
  117. K. Nogueira et al., "Exploiting ConvNet diversity for flooding identification," IEEE Geosci. Remote Sens. Lett., vol. 15, no. 9, pp. 1446-1450, 2018. https://doi.org/10.1109/lgrs.2018.2845549
  118. H. T. X. Doan and G. M. Foody, "Increasing soft classification accuracy through the use of an ensemble of classifiers," Int. J. Remote Sens., vol. 28, no. 20, pp. 4609-4623, 2007. https://doi.org/10.1080/01431160701244872
  119. Z. Wen, C. Zhang, G. Shao, S. Wu, and P. M. Atkinson, "Ensembles of multiple spectral water indices for improving surface water classification," Int. J. Appl. Earth Obs. Geoinf., vol. 96, p. 102278, 2021.
  120. T. Xu, Z. Zeng, X. Huang, J. Li, and H. Feng, "Pipeline leak detection based on variational mode decomposition and support vector machine using an interior spherical detector," Process Saf. Environ. Prot., vol. 153, pp. 167-177, 2021. https://doi.org/10.1016/j.psep.2021.07.024
  121. J. Xie, X. Xu, and S. Dubljevic, "Long range pipeline leak detection and localization using discrete observer and support vector machine," AIChE J., vol. 65, no. 7, p. e16532, 2019. https://doi.org/10.1002/aic.16498
  122. M. Liu, J. Yang, and W. Zheng, "Leak Detection in Water Pipes Based on Maximum Entropy Version of Least Square Twin K-Class Support Vector Machine," Entropy, vol. 23, no. 10, p. 1247, 2021.
  123. Q. Liu, C. Huang, Z. Shi, and S. Zhang, "Probabilistic River Water Mapping from Landsat-8 Using the Support Vector Machine Method," Remote Sens., vol. 12, no. 9, p. 1374, 2020.
  124. L. Liuzzo, V. Puleo, S. Nizza, and G. Freni, "Parameterization of a Bayesian Normalized Difference Water Index for Surface Water Detection," Geosciences, vol. 10, no. 7, p. 260, 2020.
  125. B. F. Hobbs, "Bayesian methods for analysing climate change and water resource uncertainties," J. Environ. Manage., vol. 49, no. 1, pp. 53-72, 1997. https://doi.org/10.1006/jema.1996.0116
  126. T. K. Chan and C. S. Chin, "Unsupervised Bayesian Nonparametric Approach with Incremental Similarity Tracking of Unlabeled Water Demand Time Series for Anomaly Detection," Water, vol. 11, no. 10, p. 2066, 2019.
  127. Z. Tashman, C. Gorder, S. Parthasarathy, M. M. Nasr-Azadani, and R. Webre, "Anomaly detection system for water networks in northern ethiopia using bayesian inference," Sustainability, vol. 12, no. 7, p. 2897, 2020.