• Title/Summary/Keyword: information classification

Search Result 8,390, Processing Time 0.038 seconds

DCClass: a Tool to Extract Human Understandable Fuzzy Information Granules for Classification

  • Castellano, Giovanna;Fanelli, Anna M.;Mencar, Corrado
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.376-379
    • /
    • 2003
  • In this paper we describe DCClass, a tool for fuzzy information granulation with transparency constraints. The tool is particularly suited to solve fuzzy classification problems, since it is able to automatically extract information granules with class labels. For transparency pursuits, the resulting information granules are represented in form of fuzzy Cartesian product of one-dimensional fuzzy sets. As a key feature, the proposed tool is capable to self-determining the optimal granularity level of each one-dimensional fuzzy set by exploiting class information. The resulting fun information granules can be directly translated in human-comprehensible fuzzy rules to be used for class inference. The paper reports preliminary experimental results on a medical diagnosis problem that shows the utility of the proposed tool.

  • PDF

Classification of Diagnostic Information and Analysis Methods for Weaknesses in C/C++ Programs

  • Han, Kyungsook;Lee, Damho;Pyo, Changwoo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.3
    • /
    • pp.81-88
    • /
    • 2017
  • In this paper, we classified the weaknesses of C/C++ programs listed in CWE based on the diagnostic information produced at each stage of program compilation. Our classification identifies which stages should be responsible for analyzing the weaknesses. We also present algorithmic frameworks for detecting typical weaknesses belonging to the classes to demonstrate validness of our scheme. For the weaknesses that cannot be analyzed by using the diagnostic information, we separated them as a group that are often detectable by the analyses that simulate program execution, for instance, symbolic execution and abstract interpretation. We expect that classification of weaknesses, and diagnostic information accordingly, would contribute to systematic development of static analyzers that minimizes false positives and negatives.

Optimization of Input Features for Vegetation Classification Based on Random Forest and Sentinel-2 Image (랜덤포레스트와 Sentinel-2를 이용한 식생 분류의 입력특성 최적화)

  • LEE, Seung-Min;JEONG, Jong-Chul
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.4
    • /
    • pp.52-67
    • /
    • 2020
  • Recently, the Arctic has been exposed to snow-covered land due to melting permafrost every year, and the Korea Geographic Information Institute(NGII) provides polar spatial information service by establishing spatial information of the polar region. However, there is a lack of spatial information on vegetation sensitive to climate change. This research used a multi-temporal Sentinel-2 image to perform land cover classification of the Ny-Ålesund in Arctic Svalbard. In the pre-processing step, 10 bands and 6 vegetation spectral index were generated from multi-temporal Sentinel-2 images. In image-classification step is consisted of extracting the vegetation area through 8-class land cover classification and performing the vegetation species classification. The image classification algorithm used Random Forest to evaluate the accuracy and calculate feature importance through Out-Of-Bag(OOB). To identify the advantages of multi- temporary Sentinel-2 for vegetation classification, the overall accuracy was compared according to the number of images stacked and vegetation spectral index. Overall accuracy was 77% when using single-time Sentinel-2 images, but improved to 81% when using multi-time Sentinel-2 images. In addition, the overall accuracy improved to about 83% in learning when the vegetation index was used additionally. The most important spectral variables to distinguish between vegetation classes are located in the Red, Green, and short wave infrared-1(SWIR1). This research can be used as a basic study that optimizes input characteristics in performing the classification of vegetation in the polar regions.

An improved kernel principal component analysis based on sparse representation for face recognition

  • Huang, Wei;Wang, Xiaohui;Zhu, Yinghui;Zheng, Gengzhong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.6
    • /
    • pp.2709-2729
    • /
    • 2016
  • Representation based classification, kernel method and sparse representation have received much attention in the field of face recognition. In this paper, we proposed an improved kernel principal component analysis method based on sparse representation to improve the accuracy and robustness for face recognition. First, the distances between the test sample and all training samples in kernel space are estimated based on collaborative representation. Second, S training samples with the smallest distances are selected, and Kernel Principal Component Analysis (KPCA) is used to extract the features that are exploited for classification. The proposed method implements the sparse representation under ℓ2 regularization and performs feature extraction twice to improve the robustness. Also, we investigate the relationship between the accuracy and the sparseness coefficient, the relationship between the accuracy and the dimensionality respectively. The comparative experiments are conducted on the ORL, the GT and the UMIST face database. The experimental results show that the proposed method is more effective and robust than several state-of-the-art methods including Sparse Representation based Classification (SRC), Collaborative Representation based Classification (CRC), KCRC and Two Phase Test samples Sparse Representation (TPTSR).

A Conceptual Model for Automated Cost Estimating Using Work Information Classification System of Apartment House (공동주택의 공사정보분류체계를 활용한 적산 자동화 개념 모형 개발)

  • Lee, Yang Kyu;Park, Hong Tae
    • Journal of the Society of Disaster Information
    • /
    • v.10 no.1
    • /
    • pp.15-24
    • /
    • 2014
  • The study presents work information classification system of apartment house which can organize all construction management services throughout the planning and management of a construction such as the decomposition of the design process, the assembly of construction process and cost estimating, etc. In addition, the study suggested a way to connect work information classification system based on a relational database in working order and built a conceptual model for automated cost estimating by utilizing established data base. A conceptual model for automated cost estimating will resolve the fundamental problems of the existing cost estimating system and will be able to take advantage of scientific cost estimating system at the construction site of apartment house.

Power Load Pattern Classification from AMR Data (AMR 데이터에서의 전력 부하 패턴 분류)

  • Piao, Minghao;Park, Jin-Hyung;Lee, Heon-Gyu;Shin, Jin-Ho;Ryu, Keun-Ho
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2008.05a
    • /
    • pp.231-234
    • /
    • 2008
  • Currently an automated methodology based on data mining techniques is presented for the prediction of customer load patterns in load demand data. The main aim of our work is to forecast customers' contract information from capacity of daily power consumption patterns. According to the result, we try to evaluate the contract information's suitability. The proposed our approach consists of three stages: (i) data preprocessing: noise or outlier is detected and removed (ii) cluster analysis: SOMs clustering is used to create load patterns and the representative load profiles and (iii) classification: we applied the K-NNs classifier in order to predict the customers' contract information base on power consumption patterns. According to the our proposed methodology, power load measured from AMR(automatic meter reading) system, as well as customer indexes, were used as inputs. The output was the classification of representative load profiles (or classes). Lastly, in order to evaluate KNN classification technique, the proposed methodology was applied on a set of high voltage customers of the Korea power system and the results of our experiments was presented.

A GENETIC ALGORITHM BASED FEATURE EXTRACTION TECHNIQUE FOR HYPERSPECTRAL IMAGERY

  • Ryu Byong Tae;Kim Choon-Woo;Kim Hakil;Lee Kyu Sung
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.209-212
    • /
    • 2005
  • Hyperspectral data consists of more than 200 spectral bands that are highly correlated. In order to utilize hyperspectral data for classification, dimensional reduction or feature extraction is desired. By applying feature extraction, computational complexity of classification can be reduced and classification accuracy may be improved. In this paper, a genetic algorithm based feature extraction technique is proposed. Measure from discriminant analysis is utilized as optimization criterion. A subset of spectral bands is selected by genetic algorithm. Dimension of feature space is further reduced by linear transformation. Feasibility of the proposed technique is evaluated with AVIRIS data.

  • PDF

The Optimal Bispectral Feature Vectors and the Fuzzy Classifier for 2D Shape Classification

  • Youngwoon Woo;Soowhan Han;Park, Choong-Shik
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2001.01a
    • /
    • pp.421-427
    • /
    • 2001
  • In this paper, a method for selection of the optimal feature vectors is proposed for the classification of closed 2D shapes using the bispectrum of a contour sequence. The bispectrum based on third order cumulants is applied to the contour sequences of the images to extract feature vectors for each planar image. These bispectral feature vectors, which are invariant to shape translation, rotation and scale transformation, can be used to represent two-dimensional planar images, but there is no certain criterion on the selection of the feature vectors for optimal classification of closed 2D images. In this paper, a new method for selecting the optimal bispectral feature vectors based on the variances of the feature vectors. The experimental results are presented using eight different shapes of aircraft images, the feature vectors of the bispectrum from five to fifteen and an weighted mean fuzzy classifier.

  • PDF

Navigator Lookout Activity Classification Using Wearable Accelerometers

  • Youn, Ik-Hyun;Youn, Jong-Hoon
    • Journal of information and communication convergence engineering
    • /
    • v.15 no.3
    • /
    • pp.182-186
    • /
    • 2017
  • Maintaining a proper lookout activity routine is integral to preventing ship collision accidents caused by human errors. Various subjective measures such as interviewing, self-report diaries, and questionnaires have been widely used to monitor the lookout activity patterns of navigators. An objective measurement of a lookout activity pattern classification system is required to improve lookout performance evaluation in a real navigation setting. The purpose of this study was to develop an objective navigator lookout activity classification system using wearable accelerometers. In the training session, 90.4% accuracy was achieved in classifying five fundamental lookout activities. The developed model was then applied to predict real-lookout activity in the second session during an actual ship voyage. 86.9% agreement was attained between the directly observed activity and predicted activity. Based on these promising results, the proposed unobstructed wearable system is expected to objectively evaluate navigator lookout patterns to provide a better understanding of lookout performance.

A Hangul Document Classification System using Case-based Reasoning (사례기반 추론을 이용한 한글 문서분류 시스템)

  • Lee, Jae-Sik;Lee, Jong-Woon
    • Asia pacific journal of information systems
    • /
    • v.12 no.2
    • /
    • pp.179-195
    • /
    • 2002
  • In this research, we developed an efficient Hangul document classification system for text mining. We mean 'efficient' by maintaining an acceptable classification performance while taking shorter computing time. In our system, given a query document, k documents are first retrieved from the document case base using the k-nearest neighbor technique, which is the main algorithm of case-based reasoning. Then, TFIDF method, which is the traditional vector model in information retrieval technique, is applied to the query document and the k retrieved documents to classify the query document. We call this procedure 'CB_TFIDF' method. The result of our research showed that the classification accuracy of CB_TFIDF was similar to that of traditional TFIDF method. However, the average time for classifying one document decreased remarkably.