• Title/Summary/Keyword: information classification

Search Result 8,303, Processing Time 0.031 seconds

A Preliminary Study on Clinical Decision Support System based on Classification Learning of Electronic Medical Records

  • Shin, Yang-Kyu
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.4
    • /
    • pp.817-824
    • /
    • 2003
  • We employed a hierarchical document classification method to classify a massive collection of electronic medical records(EMR) written in both Korean and English. Our experimental system has been learned from 5,000 records of EMR text data and predicted a newly given set of EMR text data over 68% correctly. We expect the accuracy rate can be improved greatly provided a dictionary of medical terms or a suitable medical thesaurus. The classification system might play a key role in some clinical decision support systems and various interpretation systems for clinical data.

  • PDF

Analysis of Cone Penetration Data Using Fuzzy C-means Clustering (Fuzzy C-means 클러스터링 기법을 이용한 콘 관입 데이터의 해석)

  • 우철웅;장병욱;원정윤
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.3
    • /
    • pp.73-83
    • /
    • 2003
  • Methods of fuzzy C-means have been used to characterize geotechnical information from static cone penetration data. As contrary with traditional classification methods such as Robertson classification chart, the FCM expresses classes not conclusiveness but fuzzy. The results show that the FCM is useful to characterize ground information that can not be easily found by using normal classification chart. But optimal number of classes may not be easily defined. So, the optimal number of classes should be determined considering not only technical measures but engineering aspects.

PCA-based Linear Dynamical Systems for Multichannel EEG Classification (다채널 뇌파 분류를 위한 주성분 분석 기반 선형동적시스템)

  • Lee, Hyekyoung;Park, Seungjin
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.10d
    • /
    • pp.232-234
    • /
    • 2002
  • EEG-based brain computer interface (BCI) provides a new communication channel between human brain and computer. The classification of EEG data is an important task in EEG-based BCI. In this paper we present methods which jointly employ principal component analysis (PCA) and linear dynamical system (LDS) modeling for the task of EEG classification. Experimental study for the classification of EEG data during imagination of a left or right hand movement confirms the validity of our proposed methods.

  • PDF

NMF-Feature Extraction for Sound Classification (소리 분류를 위한 NMF특징 추출)

  • Yong-Choon Cho;Seungin Choi;Sung-Yang Bang
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10a
    • /
    • pp.4-6
    • /
    • 2003
  • A holistic representation, such as sparse ceding or independent component analysis (ICA), was successfully applied to explain early auditory processing and sound classification. In contrast, Part-based representation is an alternative way of understanding object recognition in brain. In this paper. we employ the non-negative matrix factorization (NMF)[1]which learns parts-based representation for sound classification. Feature extraction methods from spectrogram using NMF are explained. Experimental results show that NMF-based features improve the performance of sound classification over ICA-based features.

  • PDF

An Improved Text Classification (향상된 텍스트 분류)

  • Wang, Guangxing;Shin, Seong-Yoon;Shin, Kwang-Weong;Lee, Hyun-Chang
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.01a
    • /
    • pp.125-126
    • /
    • 2019
  • In this paper, we propose an improved kNN classification method. Through improved the mothed and normalizing the data, the purpose of improving the accuracy is achieved. Then we compared the three classification algorithms and the improved algorithm by experimental data.

  • PDF

A Semantic Classification Model for Educational Resource Repositories (교육용 자원 저장소를 위한 의미적 분류 모델)

  • Choi, Myoung-Hoi;Jeong, Dong-Won
    • Journal of KIISE:Databases
    • /
    • v.34 no.1
    • /
    • pp.35-45
    • /
    • 2007
  • This paper proposes a classification model for systematical management of resources in educational repositories. A classification scheme should be provided to systematically store and manage, precisely retrieve, and maximize the usability of the resources. However, there is little research result on the classification scheme and classification model for educational repository resources. It causes several issues such as inefficient management of educational resources, incorrect retrieval, and low usability. However, there are different characteristics between the educational resource information and information of the previous fields. Therefore, a novel research on the classification scheme and classification model for the resources in educational repositories is required. To achieve the goal for efficient and easy use of the educational resources, we should manage consistently the resources according to the classification scheme accepting several views. This paper proposes a classification model to systematically manage and increase the usability of the educational resources. In other words, the proposed classification model can manages dynamically the classification scheme for the resources in educational repositories according to various views. To achieve the objectives, we first define a proper classification scheme for the implementation resources based on the classification scheme in relevant scientific technology fields. Especially, we define a novel classification model to dynamically manage the defined classification scheme. The proposed classification scheme and classification model enable more precise and systematic management of implementation resources and also increase the ease of usability.

Enhancing Gene Expression Classification of Support Vector Machines with Generative Adversarial Networks

  • Huynh, Phuoc-Hai;Nguyen, Van Hoa;Do, Thanh-Nghi
    • Journal of information and communication convergence engineering
    • /
    • v.17 no.1
    • /
    • pp.14-20
    • /
    • 2019
  • Currently, microarray gene expression data take advantage of the sufficient classification of cancers, which addresses the problems relating to cancer causes and treatment regimens. However, the sample size of gene expression data is often restricted, because the price of microarray technology on studies in humans is high. We propose enhancing the gene expression classification of support vector machines with generative adversarial networks (GAN-SVMs). A GAN that generates new data from original training datasets was implemented. The GAN was used in conjunction with nonlinear SVMs that efficiently classify gene expression data. Numerical test results on 20 low-sample-size and very high-dimensional microarray gene expression datasets from the Kent Ridge Biomedical and Array Expression repositories indicate that the model is more accurate than state-of-the-art classifying models.

Korean Traditional Music Genre Classification Using Sample and MIDI Phrases

  • Lee, JongSeol;Lee, MyeongChun;Jang, Dalwon;Yoon, Kyoungro
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.4
    • /
    • pp.1869-1886
    • /
    • 2018
  • This paper proposes a MIDI- and audio-based music genre classification method for Korean traditional music. There are many traditional instruments in Korea, and most of the traditional songs played using the instruments have similar patterns and rhythms. Although music information processing such as music genre classification and audio melody extraction have been studied, most studies have focused on pop, jazz, rock, and other universal genres. There are few studies on Korean traditional music because of the lack of datasets. This paper analyzes raw audio and MIDI phrases in Korean traditional music, performed using Korean traditional musical instruments. The classified samples and MIDI, based on our classification system, will be used to construct a database or to implement our Kontakt-based instrument library. Thus, we can construct a management system for a Korean traditional music library using this classification system. Appropriate feature sets for raw audio and MIDI phrases are proposed and the classification results-based on machine learning algorithms such as support vector machine, multi-layer perception, decision tree, and random forest-are outlined in this paper.

Design and Evaluation of ANFIS-based Classification Model (ANFIS 기반 분류모형의 설계 및 성능평가)

  • Song, Hee-Seok;Kim, Jae-Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.15 no.3
    • /
    • pp.151-165
    • /
    • 2009
  • Fuzzy neural network is an integrated model of artificial neural network and fuzzy system and it has been successfully applied in control and forecasting area. Recently ANFIS(Adaptive Network-based Fuzzy Inference System) has been noticed widely among various fuzzy neural network models because of its outstanding accuracy of control and forecasting area. We design a new classification model based on ANFIS and evaluate it in terms of classification accuracy. We identified ANFIS-based classification model has higher classification accuracy compared to existing classification model, C5.0 decision tree model by comparing their experimental results.

  • PDF

Development of Accident Classification Model and Ontology for Effective Industrial Accident Analysis based on Textmining (효과적인 산업재해 분석을 위한 텍스트마이닝 기반의 사고 분류 모형과 온톨로지 개발)

  • Ahn, Gilseung;Seo, Minji;Hur, Sun
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.5
    • /
    • pp.179-185
    • /
    • 2017
  • Accident analysis is an essential process to make basic data for accident prevention. Most researches depend on survey data and accident statistics to analyze accidents, but these kinds of data are not sufficient for systematic and detailed analysis. We, in this paper, propose an accident classification model that extracts task type, original cause materials, accident type, and the number of deaths from accident reports. The classification model is a support vector machine (SVM) with word occurrence features, and these features are selected based on mutual information. Experiment shows that the proposed model can extract task type, original cause materials, accident type, and the number of deaths with almost 100% accuracy. We also develop an accident ontology to express the information extracted by the classification model. Finally, we illustrate how the proposed classification model and ontology effectively works for the accident analysis. The classification model and ontology are expected to effectively analyze various accidents.