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Abstract

Currently, microarray gene expression data take advantage of the sufficient classification of cancers, which addresses the

problems relating to cancer causes and treatment regimens. However, the sample size of gene expression data is often restricted,

because the price of microarray technology on studies in humans is high. We propose enhancing the gene expression

classification of support vector machines with generative adversarial networks (GAN-SVMs). A GAN that generates new data

from original training datasets was implemented. The GAN was used in conjunction with nonlinear SVMs that efficiently

classify gene expression data. Numerical test results on 20 low-sample-size and very high-dimensional microarray gene

expression datasets from the Kent Ridge Biomedical and Array Expression repositories indicate that the model is more accurate

than state-of-the-art classifying models.

Index Terms: Classification, Support vector machines, Generative adversarial networks, Enhancing data, Gene expression data

I. INTRODUCTION

Cancer is one of the most dangerous diseases around the

world today. According to data from the World Health Orga-

nization, the total number of cancer patients rose to 18.1 mil-

lion new cases and 9.6 million cancer deaths in 2018 [1].

Gene expression data take advantage of the sufficient classi-

fication of cancers and become effective tools in gene dis-

covery, disease diagnosis, and treatment support. Therefore,

this technology has been applied to build a comprehensive

database of gene expression differences. However, one of the

challenges in the gene expression classification is how to

cope with low-sample-size datasets [2], especially when

using classification models that need labeled data and a large

sample size. Increasing sample sizes generates a new gene

signature from original datasets that improves the accuracy

of classification models [3].

Many machine-learning approaches are applied to classify

tumors and diseases based on gene expression data. The sup-

port vector machine (SVM) [4] has been proposed to per-

form gene expression data classification in previous research

[5, 6]. The artificial neural network model has been used to

predict cancers based on gene expression profiling [7]. A

previous study [8] proposed to use the k-nearest-neighbor

(kNN) algorithm for classifying with colon and leukemia

datasets. Gene expression data have been classified by deci-

sion tree (DT) C4.5 proposed in prior work [9]. In addition,

the random-forest (RF) algorithm [10] was applied to clas-

sify microarray gene expression data [11]. An RF of oblique

DTs effectively classified high-dimensional gene expression

data in previous work [12]. In addition, other ensemble meth-

ods, such as bagging [13] and AdaBoost [14], have been used
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[15, 16]. Recently, many researchers have used deep-learning

approaches for gene expression classification. The deep con-

volutional neural network (DCNN) model has been used to

extract features and to classify gene expression [17]. One

approach uses a sample enlargement method that combines a

stacked autoencoder and convolutional neural network [18].

However, a large sample size is necessary to train an effec-

tive classification model, but the sample size of expression

data is limited. In practice, collecting a large number of data

in classification gene expression is infeasible. For this rea-

son, data enhancement methods have been used to improve

the accuracy of classification models in many studies.

The generative adversarial network (GAN) [19] is a deep

neural network that learns from some known training data to

generate synthetic data similar to the training ones. This

model has not only been successfully applied to image data

but also to text, video, and medical data [20]. However, the

application of GANs in the field of classifying gene expres-

sion data is rare. A GAN can learn features from unlabeled

microarray data [18]. In addition, GANs can also be used to

analyze RNA-Sequencing (RNA-Seq) gene expression data

[21]. Therefore, the aim here is to use the GAN model to gen-

erate gene expression data. To the authors’ knowledge, this

approach has not been investigated for gene expression data.

In this work, an accuracy approach is proposed for the pre-

cise classification of gene expression data (SVM with gener-

ative adversarial network, or GAN-SVM). The GAN-SVM

trains GANs to generate new training data, following which

the nonlinear SVM learns to classify gene expression data

efficiently. Results for 20 low-sample-size and very high-

dimensional microarray gene expression datasets from the

Kent Ridge Biomedical [22] and ArrayExpress repositories

[23] illustrate that the proposed GAN-SVM is more accurate

than the state-of-the-art classifying models, including linear

SVMs (LSVMs), k nearest neighbors (kNN), DTs, and RFs. 

This work consists of four sections. Section II gives a

brief overview of GANs, SVMs, and the proposed GAN-

SVM. Section III shows the experimental results, and the

conclusions are presented in the final section.

II. METHODS

A. GANs

A GAN [19] is a deep-neural-network architecture consist-

ing of two neural networks: a generator network (denoted by

G) and a discriminator network (denoted by D). The aim is

to train the G, which generates new samples that are indistin-

guishable from the data distribution. The D is optimized to

distinguish samples from the real data distribution Pdata from

those of the generated data distribution pg. The G takes vec-

tor noise z ~ pz as input networks and generates samples G(z)

with distribution pg. The generated data samples generated

by model G are then sent to the D to determine their similarity

with original training data. GAN optimization finds a Nash

equilibrium [19] between the G and D. Training a GAN can

be formulated as the following mini-max objective function:

.

(1)

After the success of GANs, they have been widely used in

many studies to generate data [20]. The GAN has been used

to generate image [24, 25], text [26], and musical data. In

addition, Ofir et al. generated language data using a GAN

[27]. In other works, researchers built a GAN model to gen-

erate resolution natural images [28]. Recently, there have

been several applications of the GAN in bioinformatics, such

as [29, 30]. GANs have been used to solve the problem of

limited data by enhancing synthetic data.

To the authors’ knowledge, applications of GANs to increase

the classification accuracy of gene expression data are scarce.

In the classifying model, a successful prediction system requires

a good amount of quality data. Therefore, the aim here is to

use the GAN and SVM algorithm for gene expression data

classification. The low-sample-size problem of gene expres-

sion data classification is solved by generating new data to

enlarge gene expression datasets.

B. SVMs

The original SVM algorithm was invented by V. Vapnik

[4]. This approach is systematic and properly motivated by

the statistical learning theory. SVM is a supervised learning

model and has been widely applied to classification prob-

lems and regression [31]. 

The object of the SVM algorithm is to find the optimal

hyperplane (the best separating plane furthest from both

class +1 and class -1). The separating hyperplane is a plane

such that datapoints on one side will be labeled yi = +1,

while datapoints of other class are labeled as yi = -1. To

achieve this purpose, the SVM tries to maximize the distance

between two boundary hyperplanes to reduce the probability

of misclassification. The optimal hyperplane found by SVM

is maximally distant from the two classes of labeled points

located on each side (Fig. 1). The most popular approaches

for multiclass classifiers commonly used in SVM are the

one-versus-all [32] and one-versus-one [33] approaches.

In addition to performing linear classification, the SVM

has been very successful in building highly nonlinear classi-

fiers by means of kernel-based learning methods [34]. Ker-

nel-based learning methods aim to transform the input space

into higher dimensions, such as a radial basis function

(RBF), sigmoid function, and polynomial function.

In practice, the SVM model gives good accuracy in classi-

min
G

max
D

E x( )~P
data

x( ) logD x( )[ ] E
z~P

z

log 1 D G z( )( )–( )[ ]+



J. lnf. Commun. Converg. Eng. 17(1): 14-20, Mar. 2019 

https://doi.org/10.6109/jicce.2019.17.1.14 16

fying low-sample-size and very high-dimensional data

domains. Previous studies [5, 6, 35] have reported classify-

ing gene expression where the SVM is directly trained on

the original high-dimensional input spaces. The SVM algo-

rithm has been employed and compared with other classifi-

ers, like kNN and DTs [35]. The test results show that the

SVM outperforms the traditional algorithms. In view of what

has been mentioned so far, one can suppose that the SVM

effectively classifies gene expression data. In the proposed

approach, a non-linear SVM with an RBF kernel is used for

classifying gene expression after these datasets are enlarged

by the GAN.

C. GANs and SVMs for the Gene Expression Data 

Classification

Although the SVM is well-known as an efficient model for

classifying very high-dimensional gene expression datasets,

the low-sample-size training datasets degrade the classifica-

tion performance of any model. To overcome this situation,

it is proposed to train a GAN model from original datasets to

generate new samples for enlarging the training datasets, fol-

lowing which the nonlinear SVM learns to classify gene

expression data.

The GAN architecture in this approach has two deep-neu-

ral-network models: a generator G model and discriminator

D model (Fig. 2).

The generator G takes a noise vector from 100 random

numbers to draw from a uniform distribution as an input

player. The output of G is a vector gene expression. The net-

work architecture consists of five hidden layers with the fol-

lowing layer sizes: 32, 64, 128, 256, and 512. The Tanh

activation function is used at the output layer.

The discriminator network D has a typical neural-network

architecture that takes the input data of a vector gene expres-

sion. D consists of five hidden layers with sizes 512, 256,

128, 64, and 32. The sigmoid activation function is used at

the output layer.

We use batch normalization for generator and discrimina-

tor networks. It works by normalizing the input features of a

layer to have zero mean and unit variance [36]. In addition,

the model uses leaky rectified linear unit (ReLU) activations

in the discriminator networks. Leaky ReLU makes it possible

to pass a small gradient signal for negative values. Therefore,

it makes the gradients from the discriminator flows stronger

in the generator. Instead of passing a gradient of zero in the

back-prop pass, it passes a small negative gradient. The

Adam optimizer has been used for all networks (learning

rate of η = 0.0002 and decay rates of β = 0.5).

III. EVALUATION

The GAN-SVM was implemented in Python using Tensor

Flow [38] and Scikit library [39]. Three algorithms — kNN,

DT C4.5, and RF — in the Scikit library and the highly effi-

cient standard LSVM [40] were used as baselines. All exper-

iments were done on a NVIDIA GeForce 1050 graphics card

with 2 GB of GPU memory. The Student’s test was used to

assess the classification results of the learning algorithms.

A. Experimental Setup

Experiments were conducted with 20 low-sample-size and

high-dimensional microarray gene expression datasets from

the Kent Ridge Biomedical [22] and ArrayExpress [23]

repositories. The characteristics of datasets are presented in

Table 1.

The evaluation protocol was tenfold cross-validation. The

RF algorithm learned 200 DTs for classifying all datasets.

kNN tried to use k among {1, 3; 5; 7}. The C = 105 (a tradeoff

between the margin size and the errors) was used for 20 data-

Fig. 1. SVM for binary classification.

Fig. 2. Architecture of a generative adversarial network.
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sets for the LSVM. The total classification accuracy measure

was used to classify the results of the learning algorithms.

The GAN-SVM parameters included the number of sam-

ples generated by the GAN and the number of epochs. An

attempt was made to tune the epoch parameter from 50 to

100 to find the best experiment results. Furthermore, it was

also attempted to tune the cost constant of LSVM for GAN-

SVM to obtain good accuracy. Then, the LSVM used C =

105 for the set label for the generated data. Finally, an

attempt was made to tune parameters C and γ of the RBF

kernel to obtain good accuracy for the nonlinear SVM. Table

2 shows the best parameters after tuning.

B. Classification Results

The results obtained from the classification accuracy are

presented in Table 3. The line graphs in Fig. 3 also represent

classification results. The accuracy of the GAN-SVM

method is shown in column 9 of Table 3. The results of other

algorithms are presented from columns 2 to 8, respectively.

Table 4 summarizes the results of these statistical tests with

the paired Student ratio test.

The focus was on the classification performance compari-

son of the GAN-SVM with four other methods (kNN, DT,

RF, and LSVM). In addition, four classifiers were also com-

pared using enhanced GAN data: kNN (GAN-kNN), DT

(GAN-DT), RF (GAN-RF), and LSVM (GAN-LSVM).

Table 4 shows that GAN-SVM outperforms kNN, DT, RF,

and LSVM. Tables 3 and 4 also show that GAN-SVM sig-

nificantly improves the accuracy means of 9.96, 8.62, 1.36,

and 1.51 percentage points compared with kNN, DT, RF, and

LSVM, respectively. All p-values in Table 4 are less than

0.05, except RF. In detail, GAN-SVM has 18 wins, 2 ties,

and 0 defeats (p-value = 7.76E-05) against LSVM in column

4 of Table 3. In addition, GAN-SVM has 12 wins, 0 ties, and

8 defeats (p-value = 2.71E-01) compared with RF in column

3. In the comparison with kNN, the GAN-SVM has 19 wins,

0 ties, and 1 defeat (p-value = 2.31E-04). GAN-SVM gives

good performance compared with DT, with 18 wins, 0 ties,

Table 1. Description characterizes of 20 datasets

ID Name #Samples #Dim #Classes Ref

1 CNS 060 07129 2 [22]

2 COLON 062 02000 2 [22]

3 DLBCL 047 04026 2 [22]

4 DLBCL_SHIPP 058 07129 2 [22]

5 E-GEOD-10072 107 22283 2 [23]

6 E-GEOD-13911 069 54675 2 [23]

7 E-GEOD-20711 090 54675 5 [23]

8 E-GEOD-25136 079 22283 2 [23]

9 E-GEOD-29354 053 22215 3 [23]

10 E-GEOD-31189 092 54675 2 [23]

11 E-GEOD-36771 107 54675 2 [23]

12 E-GEOD-36895 076 54675 140 [23]

13 E-GEOD-3726 052 22283 2 [23]

14 E-GEOD-37364 094 54675 4 [23]

15 E-GEOD-51024 096 54675 2 [23]

16 E-GEOD-62452 130 33297 2 [23]

17 E-GEOD-63270 104 18989 9 [23]

18 E-GEOD-63885 101 54675 4 [23]

19 E-GEOD-65106 059 33297 3 [23]

20 E-GEOD-66533 058 54675 3 [23]

Table 2. Hyper-parameters of GAN-SVM

ID
Samples

generated
C γ ID

Samples

generated
C γ

1 50 1E+04 1E-03 11 200 1E+02 2E-05

2 100 1E+02 5E-04 12 050 1E+02 2E-05

3 50 1E+02 2E-04 13 050 1E+02 2E-05

4 200 1E+02 1E-04 14 200 1E+02 4E-05

5 50 1E+02 1E-04 15 100 1E+02 2E-05

6 100 1E+04 2E-05 16 50 1E+02 2E-05

7 100 1E+02 2E-05 17 100 1E+02 3E-05

8 100 1E+02 4E-05 18 100 1E+02 5E-05

9 300 1E+04 1E-04 19 200 1E+04 2E-05

10 50 1E+04 1E-03 20 300 1E+02 3E-05

Table 3. Classification results on 20 datasets

ID kNN C45 RF LSVM
GAN

kNN

GAN

C45

GAN

RF

GAN

LSVM

GAN

SVM

1 56.48 64.71 60.05 68.48 56.48 65.29 66.71 66.81 70.14

2 75.95 78.81 82.62 80.71 75.95 80.71 72.86 84.29 85.71

3 70.00 77.50 97.50 86.67 65.83 88.83 91.33 88.33 88.33

4 49.48 60.81 57.10 56.24 47.81 65.86 42.57 56.14 59.00

5 50.58 46.84 61.46 55.4 50.58 54.19 57.54 57.22 57.22

6 85.65 90.18 97.14 97.14 87.08 86.85 94.23 97.14 98.57

7 53.38 64.89 74.23 67.34 53.38 63.15 73.84 67.34 72.39

8 58.21 55.54 72.14 65.71 58.21 53.04 63.39 65.71 66.96

9 61.33 63.50 72.17 77.17 61.33 71.00 72.17 77.17 77.5

10 56.22 46.78 56.22 68.22 56.22 54.33 57.22 68.11 68.33

11 81.14 85.78 89.00 89.00 81.14 89.82 84.16 89.00 89.91

12 71.21 69.78 72.84 73.15 71.21 66.77 67.00 73.15 74.27

13 94.00 86.00 94.00 92.00 92.00 88.00 92.00 92.00 92.00

14 73.93 76.72 75.38 77.31 73.93 71.80 76.20 78.31 79.31

15 89.67 85.54 96.89 94.78 89.67 94.98 95.89 94.78 94.78

16 65.48 63.81 80.88 78.63 65.48 67.77 80.16 77.91 79.33

17 41.64 50.07 59.71 55.12 41.64 55.33 60.62 55.95 56.97

18 58.61 51.00 57.67 60.61 58.61 52.72 63.67 60.61 61.61

19 58.57 68.67 65.10 66.10 58.57 52.57 60.86 67.29 66.76

20 85.52 76.86 86.95 95.14 85.52 72.69 88.05 93.48 97.14
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and 2 defeats, p-value = 5.03E-06.

The results in Tables 3 and 4 also show that GAN-SVM

improves the accuracy mean of 10.28, 7.03, 3.79, and 1.27

percentage points obtained by GAN-kNN, GAN-DT, GAN-

RF, and GAN-LSVM, respectively. These improvements are

significant because the p-values are less than 0.05. In detail,

GAN-SVM has 19 wins, 1 ties, and 0 defeats (p-value = 1.22E-

07) compared with GAN-kNN. GAN-SVM has 17 wins, 0

ties, and 3 defeats (p-value = 2.31E-04) versus GAN-DT. In

the comparison with GAN-RF, GAN-SVM outperforms 16

out of 20 datasets (12 wins, 1 tie, and 7 defeats, p-value =

6.62E-03).

GAN-SVM is slightly superior to GAN-LSVM, with 15

wins, 4 ties, and 1 defeat, p-value = 7.94E-04.

IV. CONCLUSION AND FUTURE WORKS

A new GAN-SVM method was proposed to classify gene

expression data efficiently. The approach uses the GAN to

generate new samples from original datasets, and then SVM

is used as the classifying model. The test results of this

investigation on 20 low-sample-size and very high-dimen-

sional microarray gene expression datasets from the Kent

Ridge Biomedical and ArrayExpress repositories show that

the GAN-SVM model is more accurate than the state-of-the-

art classifications, including kNN, SVMs, DTs of C4.5, and

RFs. Further experimental investigations are recommended

to estimate the best number of enhancement samples to pro-

vide a classification model for large datasets of microarray

gene expression.
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