• Title/Summary/Keyword: inflammatory responses

Search Result 1,074, Processing Time 0.034 seconds

Human umbilical cord mesenchymal stem cell-derived mitochondria (PN-101) attenuate LPS-induced inflammatory responses by inhibiting NFκB signaling pathway

  • Yu, Shin-Hye;Kim, Soomin;Kim, Yujin;Lee, Seo-Eun;Park, Jong Hyeok;Cho, Gayoung;Ha, Jong-Cheon;Jung, Hahnsun;Lim, Sang-Min;Han, Kyuboem;Lee, Hong Kyu;Kang, Young Cheol;Kim, Chun-Hyung
    • BMB Reports
    • /
    • v.55 no.3
    • /
    • pp.136-141
    • /
    • 2022
  • Inflammation is one of the body's natural responses to injury and illness as part of the healing process. However, persistent inflammation can lead to chronic inflammatory diseases and multi-organ failure. Altered mitochondrial function has been implicated in several acute and chronic inflammatory diseases by inducing an abnormal inflammatory response. Therefore, treating inflammatory diseases by recovering mitochondrial function may be a potential therapeutic approach. Recently, mitochondrial transplantation has been proven to be beneficial in hyperinflammatory animal models. However, it is unclear how mitochondrial transplantation attenuates inflammatory responses induced by external stimuli. Here, we isolated mitochondria from umbilical cord-derived mesenchymal stem cells, referred as to PN-101. We found that PN-101 could significantly reduce LPS-induced mortality in mice. In addition, in phorbol 12-myristate 13-acetate (PMA)-treated THP-1 macrophages, PN-101 attenuated LPS-induced increase production of pro-inflammatory cytokines. Furthermore, the anti-inflammatory effect of PN-101 was mediated by blockade of phosphorylation, nuclear translocation, and trans-activity of NFκB. Taken together, our results demonstrate that PN-101 has therapeutic potential to attenuate pathological inflammatory responses.

Hyper-inflammatory responses in COVID-19 and anti-inflammatory therapeutic approaches

  • Choi, Hojun;Shin, Eui-Cheol
    • BMB Reports
    • /
    • v.55 no.1
    • /
    • pp.11-19
    • /
    • 2022
  • The coronavirus disease 2019 (COVID-19) is an ongoing global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Patients with severe COVID-19 exhibit hyper-inflammatory responses characterized by excessive activation of myeloid cells, including monocytes, macrophages, and neutrophils, and a plethora of pro-inflammatory cytokines and chemokines. Accumulating evidence also indicates that hyper-inflammation is a driving factor for severe progression of the disease, which has prompted the development of anti-inflammatory therapies for the treatment of patients with COVID-19. Corticosteroids, IL-6R inhibitors, and JAK inhibitors have demonstrated promising results in treating patients with severe disease. In addition, diverse forms of exosomes that exert anti-inflammatory functions have been tested experimentally for the treatment of COVID-19. Here, we briefly describe the immunological mechanisms of the hyper-inflammatory responses in patients with severe COVID-19. We also summarize current anti-inflammatory therapies for the treatment of severe COVID-19 and novel exosome-based therapeutics that are in experimental stages.

Role of ginsenosides, the main active components of Panax ginseng, in inflammatory responses and diseases

  • Kim, Ji Hye;Yi, Young-Su;Kim, Mi-Yeon;Cho, Jae Youl
    • Journal of Ginseng Research
    • /
    • v.41 no.4
    • /
    • pp.435-443
    • /
    • 2017
  • Panax ginseng is one of the most universally used herbal medicines in Asian and Western countries. Most of the biological activities of ginseng are derived from its main constituents, ginsenosides. Interestingly, a number of studies have reported that ginsenosides and their metabolites/derivatives-including ginsenoside (G)-Rb1, compound K, G-Rb2, G-Rd, G-Re, G-Rg1, G-Rg3, G-Rg5, G-Rh1, G-Rh2, and G-Rp1-exert anti-inflammatory activities in inflammatory responses by suppressing the production of proinflammatory cytokines and regulating the activities of inflammatory signaling pathways, such as nuclear factor-${\kappa}B$ and activator protein-1. This review discusses recent studies regarding molecular mechanisms by which ginsenosides play critical roles in inflammatory responses and diseases, and provides evidence showing their potential to prevent and treat inflammatory diseases.

Anti-Inflammatory Role of TAM Family of Receptor Tyrosine Kinases Via Modulating Macrophage Function

  • Lee, Chang-Hee;Chun, Taehoon
    • Molecules and Cells
    • /
    • v.42 no.1
    • /
    • pp.1-7
    • /
    • 2019
  • Macrophage is an important innate immune cell that not only initiates inflammatory responses, but also functions in tissue repair and anti-inflammatory responses. Regulating macrophage activity is thus critical to maintain immune homeostasis. Tyro3, Axl, and Mer are integral membrane proteins that constitute TAM family of receptor tyrosine kinases (RTKs). Growing evidence indicates that TAM family receptors play an important role in anti-inflammatory responses through modulating the function of macrophages. First, macrophages can recognize apoptotic bodies through interaction between TAM family receptors expressed on macrophages and their ligands attached to apoptotic bodies. Without TAM signaling, macrophages cannot clear up apoptotic cells, leading to broad inflammation due to over-activation of immune cells. Second, TAM signaling can prevent chronic activation of macrophages by attenuating inflammatory pathways through particular pattern recognition receptors and cytokine receptors. Third, TAM signaling can induce autophagy which is an important mechanism to inhibit NLRP3 inflammasome activation in macrophages. Fourth, TAM signaling can inhibit polarization of M1 macrophages. In this review, we will focus on mechanisms involved in how TAM family of RTKs can modulate function of macrophage associated with anti-inflammatory responses described above. We will also discuss several human diseases related to TAM signaling and potential therapeutic strategies of targeting TAM signaling.

Regulatory roles of ginseng on inflammatory caspases, executioners of inflammasome activation

  • Yun, Miyong;Yi, Young-Su
    • Journal of Ginseng Research
    • /
    • v.44 no.3
    • /
    • pp.373-385
    • /
    • 2020
  • Inflammation is an immune response that protects against pathogens and cellular stress. The hallmark of inflammatory responses is inflammasome activation in response to various stimuli. This subsequently activates downstream effectors, that is, inflammatory caspases such as caspase-1, 4, 5, 11, and 12. Extensive efforts have been made on developing effective and safe anti-inflammatory therapeutics, and ginseng has long been traditionally used as efficacious and safe herbal medicine in treating various inflammatory and inflammation-mediated diseases. Many studies have successfully shown that ginseng plays an anti-inflammatory role by inhibiting inflammasomes and inflammasome-activated inflammatory caspases. This review discusses the regulatory roles of ginseng on inflammatory caspases in inflammatory responses and also suggests new research areas on the anti-inflammatory function of ginseng, which provides a novel insight into the development of ginseng as an effective and safe anti-inflammatory herbal medicine.

Role of inflammasomes in inflammatory autoimmune rheumatic diseases

  • Yi, Young-Su
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.1
    • /
    • pp.1-15
    • /
    • 2018
  • Inflammasomes are intracellular multiprotein complexes that coordinate anti-pathogenic host defense during inflammatory responses in myeloid cells, especially macrophages. Inflammasome activation leads to activation of caspase-1, resulting in the induction of pyroptosis and the secretion of pro-inflammatory cytokines including interleukin $(IL)-1{\beta}$ and IL-18. Although the inflammatory response is an innate host defense mechanism, chronic inflammation is the main cause of rheumatic diseases, such as rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), ankylosing spondylitis (AS), and $Sj{\ddot{o}}gren^{\prime}s$ syndrome (SS). Since rheumatic diseases are inflammatory/autoimmune disorders, it is reasonable to hypothesize that inflammasomes activated during the inflammatory response play a pivotal role in development and progression of these diseases. Indeed, previous studies have provided important observations that inflammasomes are actively involved in the pathogenesis of inflammatory/autoimmune rheumatic diseases. In this review, we summarize the current knowledge on several types of inflammasomes during macrophage-mediated inflammatory responses and discuss recent research regarding the role of inflammasomes in the pathogenesis of inflammatory/autoimmune rheumatic diseases. This avenue of research could provide new insights for the development of promising therapeutics to treat inflammatory/autoimmune rheumatic diseases.

Inhibitory Effects of Gamimahaenggamsuk-tang on RA-related Inflammatory Responses in Cultured Fibroblast-like Synoviocytes

  • Jo Jun;NamGung Uk;Kim Soo-Myung;Kang Tak-Lim;Kim Dong-Hee
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.6
    • /
    • pp.1647-1655
    • /
    • 2005
  • Gamimahaenggamsuk-tang (GMHGST) is used for treatment of inflammatory diseases including rheumatoid arthritis (RA). Here, regulatory activity of GMHGST on RA-mediated inflammatory responses was investigated in cultured human fiDroblast-like synoviocytes (FLS), Levels of mRNAs encoding for inflammatory cytokines such as $IL-1{\beta}$, IL-6 and IL-8 and NOS-II enzyme, which had been induced by $TNF-{\alpha}$ and $IL-1{\beta}$ cotreatment, were decreased to the similar levels as those in cells treated with anti-inflammatory agent MTX. mRNA expressions of matrix metalloproteinase-3 (MMP-3) and tissue inhibitor of metalloproteinases (TIMPs) as well as intercellular adhesion molecule (ICAM) were also downregulated by increasing doses of GMHGST in activated FLS. Moreover, GMHGST appeared to protect cells by decreasing NO levels, and inhibited cell proliferation which had been induced by inflammatory stimulation by $TNF-{\alpha}$ and IL-1. These results suggest that GMHGST is effective as an inhibitory agent for regulating inflammatory responses in activated FLS.

Roles of ginsenosides in inflammasome activation

  • Yi, Young-Su
    • Journal of Ginseng Research
    • /
    • v.43 no.2
    • /
    • pp.172-178
    • /
    • 2019
  • Inflammation is an innate immune response that protects the body from pathogens, toxins, and other dangers and is initiated by recognizing pathogen-associated molecular patterns or danger-associated molecular patterns by pattern-recognition receptors expressing on or in immune cells. Intracellular pattern-recognition receptors, including nucleotide-binding oligomerization domain-like receptors (NLRs), absent in melanoma 2, and cysteine aspartate-specific protease (caspase)-4/5/11 recognize various pathogen-associated molecular patterns and danger-associated molecular patterns and assemble protein complexes called "inflammasomes." These complexes induce inflammatory responses by activating a downstream effector, caspase-1, leading to gasdermin D-mediated pyroptosis and the secretion of proinflammatory cytokines, such as interleukin $(IL)-1{\beta}$ and IL-18. Ginsenosides are natural steroid glycosides and triterpene saponins found exclusively in the plant genus Panax. Various ginsenosides have been identified, and their abilities to regulate inflammatory responses have been evaluated. These studies have suggested a link between ginsenosides and inflammasome activation in inflammatory responses. Some types of ginsenosides, including Rh1, Rg3, Rb1, compound K, chikusetsu saponin IVa, Rg5, and Rg1, have been clearly demonstrated to inhibit inflammatory responses by suppressing the activation of various inflammasomes, including the NLRP3, NLRP1, and absent in melanoma 2 inflammasomes. Ginsenosides have also been shown to inhibit caspase-1 and to decrease the expression of $IL-1{\beta}$ and IL-18. Given this body of evidence, the functional relationship between ginsenosides and inflammasome activation provides new insight into the understanding of the molecular mechanisms of ginsenoside-mediated antiinflammatory actions. This relationship also has applications regarding the development of antiinflammatory remedies by ginsenoside-mediated targeting of inflammasomes, which could be used to prevent and treat inflammatory diseases.

Beauvericin, a cyclic peptide, inhibits inflammatory responses in macrophages by inhibiting the NF-κB pathway

  • Yoo, Sulgi;Kim, Mi-Yeon;Cho, Jae Youl
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.4
    • /
    • pp.449-456
    • /
    • 2017
  • Beauvericin (BEA), a cyclic hexadepsipeptide produced by the fungus Beauveria bassiana, is known to have anti-cancer, anti-inflammatory, and anti-microbial actions. However, how BEA suppresses macrophage-induced inflammatory responses has not been fully elucidated. In this study, we explored the anti-inflammatory properties of BEA and the underlying molecular mechanisms using lipopolysaccharide (LPS)-treated macrophage-like RAW264.7 cells. Levels of nitric oxide (NO), mRNA levels of transcription factors and the inflammatory genes inducible NO synthase (iNOS) and interleukin (IL)-1, and protein levels of activated intracellular signaling molecules were determined by Griess assay, semi-quantitative reverse transcriptase-polymerase chain reaction (RT-PCR), luciferase reporter gene assay, and immunoblotting analysis. BEA dose-dependently blocked the production of NO in LPS-treated RAW264.7 cells without inducing cell cytotoxicity. BEA also prevented LPS-triggered morphological changes. This compound significantly inhibited nuclear translocation of the $NF-{\kappa}B$ subunits p65 and p50. Luciferase reporter gene assays demonstrated that BEA suppresses MyD88-dependent NF-${\kappa}B$ activation. By analyzing upstream signaling events for $NF-{\kappa}B$ activation and overexpressing Src and Syk, these two enzymes were revealed to be targets of BEA. Together, these results suggest that BEA suppresses $NF-{\kappa}B$-dependent inflammatory responses by suppressing both Src and Syk.

Inhibition of inflammatory responses elicited by urban fine dust particles in keratinocytes and macrophages by diphlorethohydroxycarmalol isolated from a brown alga Ishige okamurae

  • Fernando, I.P. Shanura;Kim, Hyun-Soo;Sanjeewa, K.K. Asanka;Oh, Jae-Young;Jeon, You-Jin;Lee, Won Woo
    • ALGAE
    • /
    • v.32 no.3
    • /
    • pp.261-273
    • /
    • 2017
  • Fine dust (FD) particles have become a major contributor to air pollution causing detrimental effects on the respiratory system and skin. Although some studies have investigated the effects of FD on the respiratory system, their possible effects on the skin remain under-explored. We investigated the FD mediated inflammatory responses in keratinocytes, present in the outer layers of skin tissues and the transfer of inflammatory potential to macrophages. We further evaluated the anti-inflammatory effects of the polyphenolic derivative, diphlorethohydroxycarmalol (DPHC) isolated from Ishige okamurae against FD-induced inflammation. Size distribution of FD particles was analyzed by scanning electron microscopy. FD particles induced the production of cyclooxygenase-2, prostaglandin E2 ($PGE_2$), interleukin (IL)-$1{\beta}$, and IL-6 in HaCaT keratinocytes and the expression of nitric oxide (NO), inducible nitric oxide synthases (iNOS), $PGE_2$, tumor necrosis factor-${\alpha}$ expression in RAW 264.7 macrophages. Further, we evaluated the inflammatory potential of the culture medium of inflammation-induced HaCaT cells in RAW 264.7 macrophages and observed a marked increase in the expression of NO, iNOS, $PGE_2$, and proinflammatory cytokines. DPHC treatment markedly attenuated the inflammatory responses, indicating its effectiveness in suppressing a broad range of inflammatory responses. It also showed anti-inflammatory potential in in-vivo experiments using FD-stimulated zebrafish embryos by decreasing NO and reactive oxygen species production, while eventing cell death caused by inflammation.