• Title/Summary/Keyword: inflammatory genes

Search Result 577, Processing Time 0.028 seconds

The Role of ROS-NF-κB Signaling Pathway in Enhancement of Inflammatory Response by Particulate Matter 2.5 in Lipopolysaccharide-stimulated RAW 264.7 Macrophages (RAW 264.7 대식세포에서 지질 다당류에 의한 미세먼지(PM2.5) 유발 염증 반응 증진에 미치는 ROS-NF-κB 신호 전달 경로의 역할)

  • Kwon, Da Hye;Kim, Da Hye;Kim, Min Yeong;Hwangbo, Hyun;Ji, Seon Yeong;Park, Seh-Kwang;Jeong, Ji-Won;Kim, Mi-Young;Lee, Hyesook;Cheong, JaeHun;Nam, Soo-Wan;Hwang, Hye-Jin;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.31 no.12
    • /
    • pp.1110-1119
    • /
    • 2021
  • The purpose of this study was to investigate whether the inflammatory response in lipopolysaccharide (LPS)-treated RAW 264.7 macrophages could be promoted by particulate matter 2.5 (PM2.5) stimulation. To this end, the levels of inflammatory parameters, reactive oxygen species (ROS) and inflammation-regulating genes were investigated in RAW 264.7 cells treated with PM2.5 in the presence or absence of LPS. Our results showed that the production levels of pro-inflammatory mediators (nitric oxide and prostaglandin E2) and cytokines (interleukin-6 and -1β) were significantly increased by PM2.5 stimulation in LPS-treated RAW 264.7 cells, which was correlated with increased expression genes involved in their production. In addition, when LPS-treated RAW 264.7 cells were exposed to PM2.5, nuclear factor-kappaB (NF-κB) expression was further increased in the nucleus, and the expression of inhibitor of NF-κB as well as NF-κB in the cytoplasm was decreased. These results suggest that the co-treatment of PM2.5 and LPS further increases the activation of the NF-κB signaling pathway compared to each treatment alone, thereby contributing to the promotion of transcriptional activity of inflammatory genes. Furthermore, although the generation of ROS was greatly increased by PM2.5 in LPS-treated RAW 264.7 cells, the NF-κB inhibitor did not reduce the generation of ROS. In addition, when the generation of ROS was artificially suppressed, the production of inflammatory mediators and the activation of NF-κB were both abolished. Therefore, our results suggest that the increase in the NF-κB-mediated inflammatory response induced by PM2.5 in LPS-treated RAW 264.7 macrophages was a ROS generation-dependent phenomenon.

Research of the Anti-inflammatory Effects of Forsythiae Fructus and Lonicerae Flos Ethanol Extracts (연교(連翹)와 금은화(金銀花) 에탄올 추출물의 항염증 효능 연구)

  • Ryu, Hyo-Kyung;Jung, Min-Jae;Choi, Yu-Jin;Yang, Seung-Jeong;Cho, Seong-Hee
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.33 no.3
    • /
    • pp.40-59
    • /
    • 2020
  • Objectives: The purpose of this study was to investigate the anti-inflammatory effects of ethanol extracts from Forsythia viridissima Lindley's fructus and Lonicera japonica Thunberg's flos in vitro, which has been frequently used in inflammatory diseases. Methods: In this experiment, the anti-inflammatory effects of ethanol extracts from Forsythia viridissima Lindley's fructus and Lonicera japonica Thunberg's flos were evaluated by checking the following substances of LPS-activated Raw264.7 cell: Prostaglandin E2 (PGE2), Nitric oxide (NO), Cyclooxygenase-2 (COX-2), inducible Nitric oxide synthase (iNOS), Interlukine-1β (IL-1β), Interlukine-6 (IL-6), Tumor necrosis factor-α (TNF-α), mitogen-activated protein kinase (MAPK), Inhibitor of kappa B-α (IκBα), Nuclear factor kappa B (NF-κB). And additionally measured reactive oxygen species (ROS) and free radicals to check the antioxidant effect of ethanol extracts from Forsythia viridissima Lindley's fructus and Lonicera japonica Thunberg's flos which affect inflammatory responses. Results: As a result of measuring anti-inflammatory efficacy, PGE2, NO, IL-1β, IL-6, TNF-α production amounts were reduced in the ethanol extracts from Forsythia viridissima Lindley's fructus and Lonicera japonica Thunberg's flos groups compared with the control group, and decreased the amount of COX-2 mRNA, iNOS mRNA gene expression. Expression of MAPK (ERK, JNK, p38) pathway was decreased. Expression of IκBα was increased and NF-κB was decreased. It is demonstrated that ethanol extracts from Forsythia viridissima Lindley's fructus and Lonicera japonica Thunberg's flos, by reducing NF-κB, regulate the expression of the inflammatory genes and reduce the inflammatory mediators. Ethanol extracts from Forsythia viridissima Lindley's fructus and Lonicera japonica Thunberg's flos also decreased ROS production and free radicals, which shown to have antioxidant efficacy and influence anti-inflammatory effects. Conclusions: These data suggest that ethanol extracts from Forsythia viridissima Lindley's fructus and Lonicera japonica Thunberg's flos can be used to treat various inflammatory diseases.

Mouse Models of Atopic Dermatitis for Drug Discovery from Medicinal Plants (아토피 피부염 치료제 개발에 활용할 수 있는 마우스 모델에 대한 고찰)

  • Yun, Young-Gab;Hwang, Joo-Min;Kim, Hyung-Rul;Jang, Seon-Il
    • Herbal Formula Science
    • /
    • v.15 no.1
    • /
    • pp.145-161
    • /
    • 2007
  • Atopic dermatitis (AD) is a chronic inflammatory skin disease associated with cutaneous hyperreactivity to environmental triggers. The clinical phenotype that characterizes AD is the product of interactions between susceptible genes, the environmental factors, defective skin barrier function, and immunologic responses. This review summarizes recent progress in our understanding of the immunopathophysiology of AD and the implications for mouse models of AD in drug discovery from medicinal plants.

  • PDF

PMA Activates Stat3 in the Jak/Stat Pathway and Induces SOCS5 in Rat Brain Astrocytes

  • Hwang, Mi-Na;Kim, Kwang Soo;Choi, Yo-Woo;Jou, Ilo;Yoon, Sungpil
    • Molecules and Cells
    • /
    • v.23 no.1
    • /
    • pp.94-99
    • /
    • 2007
  • Suppressors of cytokine signaling (SOCS) family members are negative feedback regulators of the Jak/Stat pathway, which is an essential inflammatory signaling pathway. We investigated expression of eight members of the SOCS family in rat astrocytes, using two inflammatory stimulants, PMA and IFN-${\gamma}$. Only a few SOCS genes were induced by both stimulants, and we detected an increase in SOCS5 protein with PMA. PMA activated the Jnk, Erk, p38, and Jak/Stat signal pathways. In addition, it increased the level of activated-Stat3 resulting from tyrosine phosphorylation. A gel-shift assay showed that a protein in nuclear extracts from PMA-treated cells was able to bind to Stat binding elements. These results suggest that activated Stat3 binds to SOCS promoters and leads to their transcriptional induction.

Inferring genetic regulatory networks of the inflammatory bowel disease in human peripheral blood mononuclear cells

  • Kim, Jin-Ki;Lee, Do-Heon;Yi, Gwan-Su
    • Bioinformatics and Biosystems
    • /
    • v.2 no.2
    • /
    • pp.71-74
    • /
    • 2007
  • Cell phenotypes are determined by groups of functionally related genes. Microarray profiling of gene expression provides us response of cellular state to its perturbation. Several methods for uncovering a cellular network show reliable network reconstruction. In this study, we present reconstruction of genetic regulatory network of inflammation bowel disease in human peripheral blood mononuclear cell. The microarray based on Affymetrix Gene Chip Human Genome U133 Array Set HG-U133A is processed and applied network reconstruction algorithm, ARACNe. As a result, we will show that inferred network composed of 450 nodes and 2017 edges is roughly scale-free network and hierarchical organization. The major hub, CCNL2 (cyclin A2), in inferred network is shown to be associated with inflammatory function as well as apoptotic function.

  • PDF

Cell Autonomous Circadian Systems and Their Relation to Inflammation

  • Annamneedi, Venkata Prakash;Park, Jun Woo;Lee, Geum Seon;Kang, Tae Jin
    • Biomolecules & Therapeutics
    • /
    • v.29 no.1
    • /
    • pp.31-40
    • /
    • 2021
  • All living beings on earth have an important mechanism of 24-h periodicity, which controls their physiology, metabolism, and behavior. In humans, 24-h periodicity is regulated by the superchiasmatic nucleus (SCN) through external and environmental cues. Peripheral organs demonstrate circadian rhythms and circadian clock functions, and these are also observed in cultured cell lines. Every cell contains a CLOCK: BMAL1 loop for the generation of circadian rhythms. In this review, we focused on cell autonomous circadian rhythms in immune cells, the inflammatory diseases caused by disruption of circadian rhythms in hormones, and the role of clock genes in inflammatory diseases.

Neuroprotective effect of Hexane fraction of A0054 on Delayed Neuronal Death after Transient global Ischemia in Gerbil Hippocampus

  • Kim, Haw-Jung;Lee, Sung-Jin;Je, Kang-Hoon;Mar, Woong-Chon
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.145.1-145.1
    • /
    • 2003
  • Several lines of recent evidences have shown that several pro-inflammatory genes or mediators, such as inducible nitric oxide synthase (iNOS), cyclooxygenase-2 and cytokines (e.g., tumor necrosis factor $\alpha$ and interleukin-1$\beta$), are strongly expressed in the ischemic brain. Inflammation is now recognized as a significant contributing mechanism in cerebral ischemia because anti-inflammatory compounds or inhibitors of iNOS and cyclooxygenase-2 have been proven to reduce ischemic brain damage. (omitted)

  • PDF

Effects of Wogonin, a Plant Flavone from Scutellaria Radix, on Skin Inflammation:In Vivo Regulation of Inflammation-associated Gene Expression

  • Chi, Yeon-Sook;Lim, Hyun;Park, Hae-Il;Kim, Hyun-Pyo
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.155.3-156
    • /
    • 2003
  • Flavonoids from plant origin show anti-inflammatory activity in vitro and in vivo. In addition to inhibition of inflammation-associated enzymes such as cyclooxygenases and lipoxygenases, they have been found to regulate the expression of inflammation-associated proteins from in vitro experiments. In order to prove in vivo behavior and the potential for beneficial use against inflammatory skin disorders, the effect of wogonin (5,7-dihydroxy-8-methoxyflavone) on in vivo expression of several inflammation-associated genes was examined in the intact as well as in the inflamed mouse skin by reverse transcriptase-polymerase chain reaction analysis. (omitted)

  • PDF

Neuroprotective effects of Hexane fraction of M61 on Delayed Neuronal Death after Transient global Ischemia in Gerbil Hippocampus

  • Kim, Haw-jung;Kang, Hoon-Je;Mar, Woong-Chon
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.205.1-205.1
    • /
    • 2003
  • Several lines of recent evidences have shown that several pro-inflammatory genes or mediators, such as inducible nitric oxide synthase (iNOS)are strongly expressed in the ischemic brain. Inflammation is now recognized as a significant contributing mechanism in cerebral ischemia because anti-inflammatory compounds or inhibitors of iNOS have been proven to reduce ischemic brain damage. In iNOS assay, hexane fraction of M61 inhibited NO (iNOS IC50, 0.7${\mu}$g/ml). In vivo study was carried out to evaluate neuroprotective effect of hexane fraction of M61 after transient global ischemia using Mongolian gerbil ischemia model. (omitted)

  • PDF

Ceramide analogs inhibit inducible nitric oxide synthase expression and nitric oxide production in interferon-gamma and lipopolysaccharide-stimulated RAW 264.7 macrophages.

  • Park, Sung-Sik;Kim, Hae-Jong;Yim , Chul-Bu;Kim, Mie-Young;Chun, Young-Jin
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.313.1-313.1
    • /
    • 2002
  • Nitric oxide (NO) production through the inducible nitric-oxide synthase (iNOS) pathway has been implicated in inflammatory diseases and cellular injury. Inhibition of various genes related to inflammation, including iNOS is one of the major roles of well-known anti-inflammatory drugs. In the present study, the effects of ceramide analogs on iNOS expression and NO production were evaluated to investigate how ceramide and its structurally related analogs modulate NO-mecliated cellular signals and inflammation. (omitted)

  • PDF