Browse > Article
http://dx.doi.org/10.4062/biomolther.2020.215

Cell Autonomous Circadian Systems and Their Relation to Inflammation  

Annamneedi, Venkata Prakash (Convergence Research Center, Department of Pharmacy and Institute of Chronic Disease, Sahmyook University)
Park, Jun Woo (Convergence Research Center, Department of Pharmacy and Institute of Chronic Disease, Sahmyook University)
Lee, Geum Seon (Department of Counseling and Psychology, Sahmyook University)
Kang, Tae Jin (Convergence Research Center, Department of Pharmacy and Institute of Chronic Disease, Sahmyook University)
Publication Information
Biomolecules & Therapeutics / v.29, no.1, 2021 , pp. 31-40 More about this Journal
Abstract
All living beings on earth have an important mechanism of 24-h periodicity, which controls their physiology, metabolism, and behavior. In humans, 24-h periodicity is regulated by the superchiasmatic nucleus (SCN) through external and environmental cues. Peripheral organs demonstrate circadian rhythms and circadian clock functions, and these are also observed in cultured cell lines. Every cell contains a CLOCK: BMAL1 loop for the generation of circadian rhythms. In this review, we focused on cell autonomous circadian rhythms in immune cells, the inflammatory diseases caused by disruption of circadian rhythms in hormones, and the role of clock genes in inflammatory diseases.
Keywords
Circadian rhythm; BMAL 1; PER2; Atopic dermatitis; Asthma;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Lincoln, G. A., Clarke, I. J., Hut, R. A. and Hazlerigg, D. G. (2006) Characterizing a mammalian circannual pacemaker. Science 314, 1941-1944.   DOI
2 Litinski, M., Scheer, F. A. and Shea, S. A. (2009) Influence of the circadian system on disease severity. Sleep Med. Clin. 4, 143-163.   DOI
3 Liu, J., Mankani, G., Shi, A., Meyer, M., Cunningham-Runddles, S., Ma, X. and Sun, Z. S. (2006) The circadian clock Period 2 gene regulates gamma interferon production of NK cells in host response to lipopolysaccharide-induced endotoxic shock. Infect. Immun. 74, 4750-4756.   DOI
4 Majde, J. A. and Krueger, J. M. (2005) Links between the innate immune system and sleep. J. Allergy Clin. Immunol. 116, 1188-1198.   DOI
5 Bunger, M. K., Wilsbacher, L. D., Moran, S. M., Clendenin, C., Radcliffe, L. A., Hogenesch, J. B., Simon, M. C., Takahashi, J. S. and Bradfield, C. A. (2000) Mop3 is an essential component of the master circadian pacemaker in mammals. Cell 103, 1009-1017.   DOI
6 Cermakian, N., Westfall, S. and Kiessling, S. (2014) Circadian clocks and inflammation: reciprocal regulation and shared mediators. Arch. Immunol. Ther. Exp. 62, 303-318.   DOI
7 Chang, Y., Chou, Y., Lee, J., Lee, P., Dai, Y., Sun, C., Lin, Y., Wang, L., Yu, H., Yang, Y., Chen, C., Wan, K. and Chiang, B. (2014) Atopic dermatitis, melatonin, and sleep disturbance. Pediatrics 134, e397-e405.   DOI
8 Chang, Y., Lin, M., Lee, J., Lee, P., Dai, Y, Chu, K., Sun, C., Lin, Y., Wang, L., Yu, H., Yang , Y., Chen, C., Wan, K. and Chiang, B. (2016) Melatonin supplementation for children with atopic dermatitis and sleep disturbance: a randomized clinical trial. JAMA Pediatr. 170, 35-42.   DOI
9 Cheon, S., Park, N., Cho, S. and Kim, K. (2013) Glucocorticoid-mediated Period2 induction delays the phase of circadian rhythm. Nucleic Acids Res. 41, 6161-6174.   DOI
10 Clark, T. J. (1987) Diurnal rhythm of asthma. Chest 91, 137S-141S.   DOI
11 Coogan, A. N. and Wyse, C. A. (2008) Neuroimmunology of the circadian clock. Brain Res. 1232, 104-112.   DOI
12 Curtis, A. M., Bellet, M. M., Sassone-Corsi, P. and O'Neill, L. A. (2014) Circadian clock proteins and immunity. Immunity 40, 178-186.   DOI
13 Cutolo, M., Maestroni, G. J., Otsa, K., Villaggio, B., Capellino, S., Montagna, P., Fazzuoli, L., Veldi, T., Peets, T., Hertens, E. and Sulli, A. (2005) Circadian melatonin and cortisol levels in rheumatoid arthritis patients in winter time: a north and south Europe comparison. Ann. Rheum. Dis. 64, 212-216.   DOI
14 Gibbs, J. E., Blaikley, J., Beesley, S., Matthews, L., Simpson, K. D., Boyce, S. H., Farrow, S. N., Else, K. J., Singh, D., Ray, D. W. and Loudon, A. S. I. (2012) The nuclear receptor REV-ERBα mediates circadian regulation of innate immunity through selective regulation of inflammatory cytokines. Proc. Natl. Acad. Sci. U.S.A. 109, 582-587.   DOI
15 Fukuoka, Y., Burioka N., Takata, M., Ohso, S., Miyata, M., Endo, M. and Shimizu, E. (2005) Glucocorticoid administration increases hPer1 mRNA levels in human peripheral blood mononuclear cells in vitro or in vivo. J. Biol. Rhythms 20, 550-553.   DOI
16 Gibbs, J. E., Beesley, S., Plumb, J., Singh, D., Farrow, S., Ray, D. W. and Loudon, A. S. I. (2009) Circadian timing in the lung; a specific role for bronchiolar epithelial cells. Endocrinology 150, 268-276.   DOI
17 Gibbs, J., Ince, L., Matthews, L., Mei, J., Bell, T., Yang, N., Saer, B., Begley, N., Poolman, T., Pariollaud, M., Farrow, S., Francesco, D., Hussel, T., Worthen, G. S., Ray, D. and Loudon, A. (2014) An epithelial circadian clock controls pulmonary inflammation and glucocorticoid action. Nat. Med. 20, 919-926.   DOI
18 Guo, H., Brewer, J. M., Lehman, M. N. and Bittman, E. L. (2006) Suprachiasmatic regulation of circadian rhythms of gene expression in hamster peripheral organs: effects of transplanting the pacemaker. J. Neurosci. 26, 6406-6412.   DOI
19 Marpegan, L., Bekinschtein, T. A., Costas, M. A. and Golombek, D. A. (2005) Circadian responses to endotoxin treatment in mice. J. Neuroimmunol. 160, 102-109.   DOI
20 Maronde, E. and Stehle, J. H. (2007) The mammalian pineal gland: known facts, unknown facets. Trends Endocrinol. Metab. 18, 142-149.   DOI
21 Mauriz, J. L., Collado, P. S., Veneroso, C., Reiter, R. J. and GonzalesGallego, J. (2013) A review of the molecular aspects of melatonin's anti-inflammatory actions: recent insights and new perspectives. J. Pineal Res. 54, 1-14.   DOI
22 Meyer-Bernstein, E. L., Jetton, A. E., Matsumoto, S. I., Markuns, J. F., Lehman, M. N. and Bittman, E. L. (1999) Effects of suprachiasmatic transplants on circadian rhythms of neuroendocrine function in golden hamsters. Endocrinology 140, 207-218.   DOI
23 Mittal, M., Siddiqui, M. R., Tran, K., Reddy, S. P. and Malik, A. B. (2014) Reactive oxygen species in inflammation and tissue injury. Antioxid. Redox Signal. 20, 1126-1167.   DOI
24 Nakagawa, H. and Okumura, N. (2010) Coordinated regulation of circadian rhythms and homeostasis by the suprachiasmatic nucleus. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 86, 391-409.   DOI
25 Cutolo, M. and Maestroni, G. J. (2005) The melatonin-cytokine connection in rheumatoid arthritis. Ann. Rheum. Dis. 64, 1109-1111.   DOI
26 Hadden, H., Soldin, S. J. and Massaro, D. (2012) Circadian disruption alters mouse lung clock gene expression and lung mechanics. J. Appl. Physiol. 113, 385-392.   DOI
27 Fernandes, G., Halberg, F., Yunis, E. J. and Good, R. A. (1976) Circadian rhythmic plaque-forming cell response of spleens from mice immunized with Srbc. J. Immunol. 117, 962-966.
28 Munoz-Hoyos, A., Espin-Quirantes, C., Molina-Carballo, A., Uberos, J., Contreras-Chova, F., Narbona-Lopez, E. and Gutierrez-Salmeron, M. J. (2007) Neuroendocrine and circadian aspects (melatonin and beta-endorphin) of atopic dermatitis in the child. Pediatr. Allergy Immunol. 18, 679-686.   DOI
29 Musiek, E. S., Lim, M. M., Yang, G., Bauer, A. Q., Qi, L., Lee, Y., Roh, J. H., Ortiz-Gonzalez, X., Dearborn, J. T., Culver, J. P., Herzog, E. D., Hogenesch, J. B., Wozniak, D. F., Dikranian, K., Giasson, B. I., Weaver, D. R., Holtzman, D. M. and Fitzgerald, G. A (2013) Circadian clock proteins regulate neuronal redox homeostasis and neurodegeneration. J. Clin. Invest. 123, 5389-5400.   DOI
30 Nagoshi, E., Saini, C., Bauer, C., Laroche, T., Naf, F. and Schibler, U. (2004) Circadian gene expression in individual fibroblasts: cellautonomous and self-sustained oscillators pass time to daughter cells. Cell 119, 693-705.   DOI
31 Neeck, G., Federlin, K., Graef, V., Rusch, D. and Schmidt, K. L. (1990) Adrenal secretion of cortisol in patients with rheumatoid arthritis. J. Rheumatol. 17, 24-29.
32 Nguyen, K. D., Fentress, S. J., Qiu, Y., Yun, K., Cox, J. S. and Chawla, A. (2013) Circadian gene Bmal1 regulates diurnal oscillations of Ly6C(hi) inflammatory monocytes. Science 341, 1483-1488.   DOI
33 Oishi, Y., Hayashi, S., Isagawa, T., Oshima, M., Iwama, A., Shimba, S., Okamura, H. and Manabe, I. (2017) Bmal1 regulates inflammatory responses in macrophages by modulating enhancer RNA transcription. Sci. Rep. 7, 7086.   DOI
34 Patel, T., Ishiuji, Y. and Yosipovitch, G. (2007) Nocturnal itch: why do we itch at night? Acta Derm. Venereol. 87, 295-298.   DOI
35 Schibler, U. (2007) The daily timing of gene expression and physiology in mammals. Dialogues Clin. Neurosci. 9, 257-272.   DOI
36 Pekovic-Vaughan, V., Gibbs, J., Yoshitane, H., Yang, N., Pathiranage, D., Guo, B., Sagami, A., Taguchi, K., Bechtole, D., Loudon, A., Yamamoto, M., Chan, J., van der Horst, G. T., Fukada, Y. and Meng, Q. (2014) The circadian clock regulates rhythmic activation of the NRF2/glutathione-mediated antioxidant defense pathway to modulate pulmonary fibrosis. Genes Dev. 28, 548-560.   DOI
37 Ralph, M. R., Foster, R. G., Davis, F. C. and Menaker, M. (1990) Transplanted suprachiasmatic nucleus determines circadian period. Science 247, 975-978.   DOI
38 Robinson, I. and Reddy, A. B. (2014) Molecular mechanisms of the circadian clockwork in mammals. FEBS Lett. 588, 2477-2483.   DOI
39 Rosenwasser, A. M. (2009) Functional neuroanatomy of sleep and circadian rhythms. Brain Res. Rev. 61, 281-306.   DOI
40 Schibler, U. (2006) Circadian time keeping: the daily ups and downs of genes, cells, and organisms. Prog. Brain Res. 153, 271-282.   DOI
41 Schmidt, R., Parish, E. J., Dionisius, V., Cathelineau, C., Michel, S., Shroot, B., Rolland, A., Brzokewicz, A. and Reichert, U. (1991) Modulation of cellular cholesterol and its effect on cornified envelope formation in cultured human epidermal keratinocytes. J. Invest. Dermatol. 97, 771-775.   DOI
42 Schwarz, W., Birau, N., Hornstein, O. P., Heubeck, B., Schonberger, A., Meyer, C. and Gottschalk, J. (1988) Alterations of melatonin secretion in atopic eczema. Acta Derm. Venereol. 68, 224-229.
43 Segall, L. A. and Amir, S. (2010) Glucocorticoid regulation of clock gene expression in the mammalian limbic forebrain. J. Mol. Neurosci. 42, 168-175.   DOI
44 Silver, A. C., Arjona, A., Walker, W. E. and Fikrig, E. (2012) The circadian clock controls toll-like receptor 9-mediated innate and adaptive immunity. Immunity 36, 251-261.   DOI
45 So, A. Y., Bernal, T. U., Pillsbury, M. L., Yamamoto, K. R. and Feldman, B. J. (2009) Glucocorticoid regulation of the circadian clock modulates glucose homeostasis. Proc .Natl. Acad. Sci. U.S.A. 106, 17582-17587.   DOI
46 Drazen, D. L., Bilu, D., Bilbo, S. D. and Nelson, R. J. (2001) Melatonin enhancement of splenocyte proliferation is attenuated by luzindole, a melatonin receptor antagonist. Am. J. Physiol. Regul. Integr. Comp. Physiol. 280, R1476-R1482.   DOI
47 del Gobbo, V., Libri, V., Villani, N., Calio, R. and Nistico, G. (1989) Pinealectomy inhibits interleukin-2 production and natural killer activity in mice. Int. J. Immunopharmacol. 11, 567-573.   DOI
48 Delagrange, P. and Guardiola-Lemaitre, B. (1997) Melatonin, its receptors, and relationships with biological rhythm disorders. Clin. Neuropharmacol. 20, 482-510.   DOI
49 Dimitrov, S., Lange, T., Nohroudi, K. and Born, J. (2007) Number and function of circulating human antigen presenting cells regulated by sleep. Sleep 30, 401-411.   DOI
50 Duguay, D. and Cermakian, N. (2009) The crosstalk between physiology and circadian clock proteins. Chronobiol. Int. 26, 1479-1513.   DOI
51 Durrington, H. J., Farrow, S. N., Loudon, A. S. and Ray, D. W. (2014) The circadian clock and asthma. Thorax 69, 90-92.   DOI
52 Hara-Chikuma, M. and Verkman, A. S. (2008) Roles of aquaporin-3 in the epidermis. J. Invest. Dermatol. 128, 2145-2151.   DOI
53 Haeck, I. M., Timmer-de Mik, L., Lentjes, E. G., Buskens, E., Hijnen, D. J., Guikers, C., Bruijnzeel-Koomen, C. A. F. M. and de Bruin-Weller, M. S. (2007) Low basal serum cortisol in patients with severe atopic dermatitis: potent topical corticosteroids wrongfully accused. Br. J. Dermatol. 156, 979-985.   DOI
54 Halberg, F., Johnson, E. A., Brown, B. W. and Bittner, J. J. (1960) Susceptibility rhythm to E. coli endotoxin and bioassay. Proc. Soc. Exp. Biol. Med. 103, 142-144.   DOI
55 Haldar, C. and Ahmad, R. (2010) Photoimmunomodulation and melatonin. J. Photochem. Photobiol. B Biol. 98, 107-117.   DOI
56 Hastings, M., O'Neill, J. S. and Maywood, E. S. (2007) Circadian clocks: regulators of endocrine and metabolic rhythms. J. Endocrinol. 195, 187-198.   DOI
57 Haus, E. (2007) Chronobiology in the endocrine system. Adv. Drug Deliv. Rev. 59, 985-1014.   DOI
58 Hayashi, M., Shimba, S. and Tezuka, M. (2007) Characterization of the molecular clock in mouse peritoneal macrophages. Biol. Pharm. Bull. 30, 621-626.   DOI
59 Hrushesky, W. J., Langevin, T., Kim, Y. J. and Wood, P. A. (1994) Circadian dynamics of tumor necrosis factor alpha (cachectin) lethality. J. Exp. Med. 180, 1059-1065.   DOI
60 Son, G. H., Chung, S. and Kim, K. (2011) The adrenal peripheral clock: glucocorticoid and the circadian timing system. Front. Neuroendocrinol. 32, 451-465.   DOI
61 Sporl, F., Schellenberg, K., Blatt, T., Wenck, H., Wittern, K., Schrader, A. and Kramer, A. (2011) A circadian clock in HaCaT keratinocytes. J. Invest. Dermatol. 131, 338-348.   DOI
62 Storch, K. F., Paz, C., Signorovitch, J., Raviola, E., Pawlyk, B., Li, T. and Weitz, C. J. (2007) Intrinsic circadian clock of the mammalian retina: importance for retinal processing of visual information. Cell 130, 730-741.   DOI
63 Sulli, A., Maestroni, G. J., Villaggio, B., Hertens, E., Craviotto, C., Pizzorni, C., Briata, M., Seriolo, B. and Cutolo, M. (2002) Melatonin serum levels in rheumatoid arthritis. Ann. N. Y. Acad. Sci. 966, 276-283.   DOI
64 Takahashi, J. S., Hong, H. K., Ko, C. H. and McDearmon, E. L. (2008) The genetics of mammalian circadian order and disorder: implications for physiology and disease. Nat. Rev. Genet. 9, 764-775.   DOI
65 Vaughn, A. R., Clark, A. K., Sivamani, R. K. and Shi, V. Y. (2018) Circadian rhythm in atopic dermatitis-pathophysiology and implications for chronotherapy. Pediatr. Dermatol. 35, 152-157.   DOI
66 Verschoore, M., Poncet, M., Krebs, B. and Ortonne, J. P. (1993) Circadian variations in the number of actively secreting sebaceous follicles and androgen circadian rhythms. Chronobiol. Int. 10, 349-359.   DOI
67 Webster, J. I., Tonelli, L. and Sternberg, E. M. (2002) Neuroendocrine regulation of immunity. Annu. Rev. Immunol. 20, 125-163.   DOI
68 Welsh, D. K., Yoo, S. H., Liu, A. C., Takahashi, J. S. and Kay, S. A. (2004) Bioluminescence imaging of individual fibroblasts reveals persistent, independently phased circadian rhythms of clock gene expression. Curr. Biol. 14, 2289-2295.   DOI
69 Esquifino, A. I., Selgas, L., Arce, A., Maggiore, V. D. and Cardinali, D. P. (1996) Twenty-four-hour rhythms in immune responses in rat submaxillary lymph nodes and spleen: effect of cyclosporine. Brain Behav. Immun. 10, 92-102.   DOI
70 Ehlers, A., Xie, W., Agapov, E., Brown, S., Steinberg, D., Tidwell R., Sajol, G., Schutz, R., Weaver, R., Yu, H., Castro, M., Bacharier, L. B., Wang, X., Holtzman, M. J. and Haspel, J. A. (2018) BMAL1 links the circadian clock to viral airway pathology and asthma phenotypes. Mucosal Immunol. 11, 97-111.   DOI
71 Fabry, Z., Fitzsimmons, K. M., Herlein, J. A., Moninger, T. O., Dobbs, M. B. and Hart, M. N. (1993) Production of the cytokines interleukin 1 and 6 by murine brain microvessel endothelium and smooth muscle pericytes. J. Neuroimmunol. 47, 23-34.   DOI
72 Yosipovitch, G., Sackett-Lundeen, L., Goon, A., Huak, C. Y., Goh, C. L. and Haus, E. (2004) Circadian and ultradian (12 h) variations of skin blood flow and barrier function in non-irritated and irritated skin-effect of topical corticosteroids. J. Invest. Dermatol. 122, 824-829.   DOI
73 Hwang, J. W., Sundar, I. K., Yao, H., Sellix, M. T. and Rahman, I. (2014) Circadian clock function is disrupted by environmental tobacco/cigarette smoke, leading to lung inflammation and injury via a SIRT1-BMAL1 pathway. FASEB J. 28, 176-194.   DOI
74 Inouye, S. T. and Kawamura, H. (1979) Persistence of circadian rhythmicity in a mammalian hypothalamic "island" containing the suprachiasmatic nucleus. Proc. Natl. Acad. Sci. U.S.A. 76, 5962-5966.   DOI
75 Yamazaki, S., Numano, R., Abe, M., Hida, A., Takahashi, R., Ueda, M., Block, G. D., Sakaki, Y., Menaker, M. and Tei, H. (2000) Resetting central and peripheral circadian oscillators in transgenic rats. Science 288, 682-685.   DOI
76 Yosipovitch, G., Xiong, G. L., Haus, E., Sackett-Lundeen, L., Ashkenazi, I. and Maibach, H. I. (1998) Time-dependent variations of the skin barrier function in humans: transepidermal water loss, stratum corneum hydration, skin surface pH, and skin temperature. J. Invest. Dermatol. 110, 20-23.   DOI
77 Yosipovitch, G., Goon, A. T., Wee, J., Chan, Y. H., Zucker, I. and Goh, C. L. (2002) Itch characteristics in Chinese patients with atopic dermatitis using a new questionnaire for the assessment of pruritus. Int. J. Dermatol. 41, 212-216.   DOI
78 Young, M. R., Matthews, J. P., Kanabrocki, E. L., Sothern, R. B., Roitman-Johnson, B. and Scheving, L. E. (1995) Circadian rhythmometry of serum interleukin-2, interleukin-10, tumor necrosis factoralpha, and granulocyte-macrophage colony-stimulating factor in men. Chronobiol. Int. 12, 19-27.   DOI
79 Zheng, B., Larkin, D. W., Albrecht, U., Sun, Z. S., Sage, M., Eichele, G., Lee, C. C. and Bradley, A. (1999) The mPer2 gene encodes a functional componentof the mammalian circadian clock. Nature 400, 169-173.   DOI
80 Arjona, A. and Sarkar, D. K. (2005) Circadian oscillations of clock genes, cytolytic factors, and cytokines in rat NK cells. J. Immunol. 174, 7618-7624.   DOI
81 Arjona, A. and Sarkar, D. K. (2006) The circadian gene mPer2 regulates the daily rhythm of IFN-gamma. J. Interferon Cytokine Res. 26, 645-649.   DOI
82 Kelly, E. A., Houtman, J. J. and Jarjour, N. N. (2004) Inflammatory changes associated with circadian variation in pulmonary function in subjects with mild asthma. Clin. Exp. Allergy 34, 227-233.   DOI
83 Krieger, D. T. (1975) Rhythms of ACTH and corticosteroid secretion in health and disease, and their experimental modification. J. Steroid Biochem. 6, 785-791.   DOI
84 Kwak, Y., Lundkvist, G. B., Brask, J., Davidson, A., Menaker, M., Kritensoon, K. and Block, G. D. (2008) Interferon-gamma alters electrical activity and clock gene expression in suprachiasmatic nucleus neurons. J. Biol. Rhythms 23, 150-159.   DOI
85 Lakatos, P., Blumsohn, A., Eastell, R., Tarjan, G., Shinoda, H. and Sterm. P. H. (1995) Circadian rhythm of in vitro bone-resorbing activity in human serum. J. Clin. Endocrinol. Metab. 80, 3185-3190.   DOI
86 Kawate, T., Abo, T., Hinuma, S. and Kumagai, K. (1981) Studies of the bioperiodicity of the immune response. II. Co-variations of murine T and B cells and a role of corticosteroid. J. Immunol. 126, 1364-1367.
87 Keller, M., Mazuch, J., Abraham, U., Eom, G. D., Herzog, E. D., Volk, H., Kramer, A. and Maier, B. (2009) A circadian clock in macrophages controls inflammatory immune responses. Proc. Natl. Acad. Sci. U.S.A. 106, 21407-21412.   DOI
88 Kiessling, S., Eichele, G. and Oster, H. (2010) Adrenal glucocorticoids have a key role in circadian resynchronization in a mouse model of jet lag. J. Clin. Invest. 120, 2600-2609.   DOI
89 Bang, J., Chang, H. W., Jung, H. R., Cho, C., Hur, J., Lee, S., Choi, T. H., Kim, S. and Ha, E. (2012) Melatonin attenuates clock gene Cryptochrome1, which may aggravate mouse anti-type II collagen antibody-induced arthritis. Rheumatol. Int. 32, 379-385.   DOI
90 Balsalobre, A., Brown, S. A., Marcacci, L., Tronche, F., Kellendonk, C., Reichardt, H. M., Schutz, G. and Schibler, U. (2000) Resetting of circadian time in peripheral tissues by glucocorticoid signaling. Science 289, 2344-2347.   DOI
91 Barnes, P. J., Adcock, I., Spedding, M. and Vanhoutte, P. M. (1993) Anti-inflammatory actions of steroids: molecular mechanisms. Trends Pharmacol. Sci. 14, 436-441.   DOI
92 Bergeron, C., Al-Ramli, W. and Hamid, Q. (2009) Remodeling in asthma. Proc. Am. Thorac. Soc. 6, 301-305.   DOI
93 Borish, L., King, M. S., Mascali, J. J., Johnson, S., Coll, B. and Rosenwasser, L. J. (1992) Transthyretin is an inhibitor of monocyte and endothelial cellinterleukin-1 production. Inflammation 16, 471-484.   DOI
94 Bourdoulous, S., Bensaid, A., Martinez, D., Sheikboudou, C., Trap, I., Strosberg, A. D. and Couraud, P. O. (1995) Infection of bovine brain microvessel endothelial cells with Cowdria ruminantium elicits IL-1 beta, -6, and -8 mRNA production and expression of an unusual MHC class II DQ alpha transcript. J. Immunol. 154, 4032-4038.
95 Brown, S. A., Zumbrunn, G., Fleury-Olela, F., Preitner, N. and Schibler, U. (2002) Rhythms of mammalian body temperature can sustain peripheral circadian clocks. Curr. Biol. 12, 1574-1583.   DOI
96 Le Fur, I., Reinberg, A., Lopez, S., Morizot, F., Mechkouri, M. and Tschachler, E. (2001) Analysis of circadian and ultradian rhythms of skin surface properties of face and forearm of healthy women. J. Invest. Dermatol. 117, 718-724.   DOI
97 Lamia, K. A., Storch, K. F. and Weitz, C. J. (2008) Physiological significance of a peripheral tissue circadian clock. Proc. Natl. Acad. Sci. U.S.A. 105, 15172-15177.   DOI
98 Lange, T., Dimitrov, S., Fehm, H. L. and Born, J. (2006) Sleep-like concentrations of growth hormone and cortisol modulate type 1 and type2 in-vitro cytokine production in human T cells. Int. Immunopharmacol. 6, 216-225.   DOI
99 Lange, T., Dimitrov, S. and Born, J. (2010) Effects of sleep and circadian rhythm on the human immune system. Ann. N. Y. Acad. Sci. 1193, 48-59.   DOI
100 Lee, H., Chen, R., Lee, Y., Yoo, S. and Lee, C. (2009) Essential roles of CKIδ and CKIε in the mammalian circadian clock. Proc. Natl. Acad. Sci. U.S.A. 106, 21359-21366.   DOI
101 Lee, J., Moulik, M., Fang, Z., Saha, P., Zou, F., Xu, Y., Nelson, D. L., Ma, K., Moore, D. D. and Yechoor, V. K. (2013) Bmal1 and β-cell clock are required for adaptation to circadian disruption, and their loss of function leads to oxidative stress-induced β-cell failure in mice. Mol. Cell. Biol. 33, 2327-2338.   DOI
102 Kondratov, R. V., Kondratova, A. A., Gorbacheva, V. Y., Vykhovanets, O. V. and Antoch, M. P. (2006) Early aging and age-related pathologies in mice deficient in BMAL1, the core component of the circadian clock. Genes Dev. 20, 1868-1873.   DOI
103 Kim, T. H., Jung, J. A., Kim, G. D., Jang, A. H., Ahn, H. J., Park, Y. S. and Park, C. S. (2009) Melatonin inhibits the development of 2,4-dinitrofluorobenzene-induced atopic dermatitis-like skin lesions in NC/Nga mice. J. Pineal Res. 47, 324-329.   DOI
104 Kobayashi, E. H., Suzuki, T., Funayama, R., Nagashima, T., Hayashi, M., Sekine, H., Tanaka, N., Moriguchi, T., Motohashi, H., Nakayama, K. and Yamamoto, M. (2016) Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription. Nat. Commun. 7, 11624.   DOI
105 Kondratov, R. V., Vykhovanets, O., Kondratova, A. A. and Antoch, M. P. (2009) Antioxidant N-acetyl-L-cysteine ameliorates symptoms of premature aging associated with the deficiency of the circadian protein BMAL1. Aging (Albany N.Y.) 1, 979-987.   DOI