• Title/Summary/Keyword: inflammatory genes

Search Result 575, Processing Time 0.027 seconds

Bioinformatic Prediction of SNPs within miRNA Binding Sites of Inflammatory Genes Associated with Gastric Cancer

  • Song, Chuan-Qing;Zhang, Jun-Hui;Shi, Jia-Chen;Cao, Xiao-Qin;Song, Chun-Hua;Hassan, Adil;Wang, Peng;Dai, Li-Ping;Zhang, Jian-Ying;Wang, Kai-Juan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.2
    • /
    • pp.937-943
    • /
    • 2014
  • Polymorphisms in miRNA binding sites have been shown to affect miRNA binding to target genes, resulting in differential mRNA and protein expression and susceptibility to common diseases. Our purpose was to predict SNPs (single nucleotide polymorphisms) within miRNA binding sites of inflammatory genes in relation to gastric cancer. A complete list of SNPs in the 3'UTR regions of all inflammatory genes associated with gastric cancer was obtained from Pubmed. miRNA target prediction databases (MirSNP, Targetscan Human 6.2, PolymiRTS 3.0, miRNASNP 2.0, and Patrocles) were used to predict miRNA target sites. There were 99 SNPs with MAF>0.05 within the miRNA binding sites of 41 genes among 72 inflammation-related genes associated with gastric cancer. NF-${\kappa}B$ and JAK-STAT are the two most important signaling pathways. 47 SNPs of 25 genes with 95 miRNAs were predicted. CCL2 and IL1F5 were found to be the shared target genes of hsa-miRNA-624-3p. Bioinformatic methods could identify a set of SNPs within miRNA binding sites of inflammatory genes, and provide data and direction for subsequent functional verification research.

Inhibitory Effects of Lycopene on the Expression of Pro-inflammatory Genes in Human Vascular Endothelial Cells (혈관내피세포에서 라이코펜이 염증유전자 발현에 미치는 영향)

  • Kim, Tae-Hoon;Bae, Jong-Sup
    • Food Science and Preservation
    • /
    • v.19 no.2
    • /
    • pp.287-293
    • /
    • 2012
  • Lycopene, found in tomatoes and tomato products, has antioxidant, anticancer, and anti-inflammatory effects. High-mobility-group box 1 (HMGB1) mediates the pro-inflammatory responses in several inflammatory diseases. In this study, the potential roles of lycopene in the HMGB1-mediated pro-inflammatory gene expressions in the primary human-umbilical-vein endothelial cells (HUVECs) were investigated. The data showed that HMGB1 upregulated the expressions of monocyte chemotactic protein 1 (MCP-1), interleukin-6 (IL-6), secretory phospholipase A2 (sPLA2)-IIA, and prostaglandin E2 (PGE2). Lycopene pre-incubation for 6 h decreased the HMGB1-mediated induction of MCP-1, IL-6, sPLA2-IIA, and PGE2. Further study revealed that the inhibitory effects of lycopene on the HMGB-1 induced expression of pro-inflammatory genes were mediated by the inhibition of two important inflammatory cytokines: tumor necrosis factor (TNF)-${\alpha}$ and nuclear factor (NF)-${\kappa}B$. These results suggest that HMGB1 upregulated the expression of pro-inflammatory genes and lycopene inhibited HMGB-1-induced pro-inflammatory genes by inhibiting TNF-${\alpha}$ and NF-${\kappa}B$. This finding will serve as an important evidence in the development of a new medicine for the treatment of inflammatory diseases.

Cordycepin Suppresses Expression of Diabetes Regulating Genes by Inhibition of Lipopolysaccharide-induced Inflammation in Macrophages

  • Shin, Seul-Mee;Lee, Sung-Won;Kwon, Jeong-Hak;Moon, Sun-Hee;Lee, Seung-Jeong;Lee, Chong-Kil;Cho, Kyung-Hae;Ha, Nam-Joo;Kim, Kyung-Jae
    • IMMUNE NETWORK
    • /
    • v.9 no.3
    • /
    • pp.98-105
    • /
    • 2009
  • Background: It has been recently noticed that type 2 diabetes (T2D), one of the most common metabolic diseases, causes a chronic low-grade inflammation and activation of the innate immune system that are closely involved in the pathogenesis of T2D. Cordyceps militaris, a traditional medicinal mushroom, produces a component compound, cordycepin (3'-deoxyadenosine). Cordycepin has been known to have many pharmacological activities including immunological stimulating, anti-cancer, and anti-infection activities. The molecular mechanisms of cordycepin in T2D are not clear. In the present study, we tested the role of cordycepin on the anti-diabetic effect and anti-inflammatory cascades in LPS-stimulated RAW 264.7 cells. Methods: We confirmed the levels of diabetes regulating genes mRNA and protein of cytokines through RT-PCR and western blot analysis and followed by FACS analysis for the surface molecules. Results: Cordycepin inhibited the production of NO and pro-inflammatory cytokines such as IL-$1{\beta}$, IL-6, and TNF-${\alpha}$ in LPS-activated macrophages via suppressing protein expression of pro-inflammatory mediators. T2D regulating genes such as $11{\beta}$-HSD1 and PPAR${\gamma}$ were decreased as well as expression of co-stimulatory molecules such as ICAM-1 and B7-1/-2 were also decreased with the increment of its concentration. In accordance with suppressed pro-inflammatory cytokine production lead to inhibition of diabetic regulating genes in activated macrophages. Cordycepin suppressed NF-${\kappa}B$ activation in LPS-activated macrophages. Conclusion: Based on these observations, cordycepin suppressed T2D regulating genes through the inactivation of NF-${\kappa}B$ dependent inflammatory responses and suggesting that cordycepin will provide potential use as an immunomodulatory agent for treating immunological diseases.

Mycoplasma hyopneumoniae Induces Grap, Gadd45β, and secreted phosphoprotein 1 Gene Expression as Part of the Inflammatory Response in RAW264.7 Cells

  • Hwang, Mi-Hyun;Choi, Myung-Jin;Park, Seung-Chun
    • Toxicological Research
    • /
    • v.25 no.3
    • /
    • pp.119-124
    • /
    • 2009
  • Genes related to Mycoplasma hyopneumoniae-induced inflammation were identified using the genefishing technology, an improved method for identifying differentially expressed genes (DEGs) using an annealing control primer (ACP) system in RAW264.7 cells. After treatment with M. hyopneumoniae, 16 DEGs were expressed in RAW264.7 cells using a pre-screening system. Among these 16 DEGs, 11 DEGs (DEGs 1, 4, 5-10, 12-15) were selected and sequenced directly, revealing that DEG12 (Grap), DEG14 (Gadd45), and DEG15 (secreted phosphoprotein 1) were related to inflammatory cytokines. This is the first report that intact M. hyopneumoniae induces the expression of Grap, Gadd 45${\beta}$, and secreted phosphoprotein 1 in RAW264.7 cells. Subsequently, these genes may be targets for screening novel inhibitors of the mycoplasmal inflammatory response.

Anti-inflammatory effect of sulforaphane on LPS-stimulated RAW 264.7 cells and ob/ob mice

  • Ranaweera, Sachithra S.;Dissanayake, Chanuri Y.;Natraj, Premkumar;Lee, Young Jae;Han, Chang-Hoon
    • Journal of Veterinary Science
    • /
    • v.21 no.6
    • /
    • pp.91.1-91.15
    • /
    • 2020
  • Background: Sulforaphane (SFN) is an isothiocyanate compound present in cruciferous vegetables. Although the anti-inflammatory effects of SFN have been reported, the precise mechanism related to the inflammatory genes is poorly understood. Objectives: This study examined the relationship between the anti-inflammatory effects of SFN and the differential gene expression pattern in SFN treated ob/ob mice. Methods: Nitric oxide (NO) level was measured using a Griess assay. The inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression levels were analyzed by Western blot analysis. Pro-inflammatory cytokines (tumor necrosis factor [TNF]-α, interleukin [IL]-1β, and IL-6) were measured by enzyme-linked immunosorbent assay (ELISA). RNA sequencing analysis was performed to evaluate the differential gene expression in the liver of ob/ob mice. Results: The SFN treatment significantly attenuated the iNOS and COX-2 expression levels and inhibited NO, TNF-α, IL-1β, and IL-6 production in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. RNA sequencing analysis showed that the expression levels of 28 genes related to inflammation were up-regulated (> 2-fold), and six genes were down-regulated (< 0.6-fold) in the control ob/ob mice compared to normal mice. In contrast, the gene expression levels were restored to the normal level by SFN. The protein-protein interaction (PPI) network showed that chemokine ligand (Cxcl14, Ccl1, Ccl3, Ccl4, Ccl17) and chemokine receptor (Ccr3, Cxcr1, Ccr10) were located in close proximity and formed a "functional cluster" in the middle of the network. Conclusions: The overall results suggest that SFN has a potent anti-inflammatory effect by normalizing the expression levels of the genes related to inflammation that were perturbed in ob/ob mice.

The Effects of Prunella vulgaris on the Cyto-pathological Alterations and Expression of Inflammatory Cytokines in Non-Bacterial Prostatitis Rat Model (하고초(夏枯草)가 만성 비세균성 전립선염 Rat의 전립선세포 조직변화 및 염증관련 Cytokines 발현에 미치는 영향)

  • Han, Yang-Hee
    • The Journal of Korean Medicine
    • /
    • v.29 no.2
    • /
    • pp.71-80
    • /
    • 2008
  • Objective: There is increasing evidence that chronic non-bacterial prostatitis is recognized to be a local inflammatory disease, and there is substantiating evidence to support the role of the inflammatory responses in its pathogenesis, and clinical value in the evaluation of therapeutic efficacy. Prunella vulgaris has been traditionally used in treatment of inflammatory diseases, including of scrofula, goiter, and allergy diseases. In this study, we investigated the effects of Prunella vulgaris on inflammatory cytokines and cytopathological alternation in the rat model of non-bacterial prostatitis induced by castration and $17{\beta}-estradiol$ treatment. Methods: Two-month-old rats were treated with $17{\beta}-estradiol$ after castration for induction of experimental non-bacterial prostatitis, which is similar to human chronic prostatitis in histopathological profiles. Prunella vulgaris as an experimental specimen, and testosterone as a positive control, were administered orally. The prostates were evaluated by histopathological parameters including the epithelial score and epithelial-stromal ratio for glandular damage, and the expression of inflammatory cytokine genes including the interleukin $(IL)-1{\beta}$, IL-5, IL-12, and tumor necrosis factor $(TNF)-{\alpha}$. Results: While prostates of control rats revealed severe acinar gland atrophy and stromal proliferation, the rats treated with Prunella vulgaris showed a diminished range of tissue damage. Epithelial score was improved in Prunella vulgaris over that of the control (P<0.05). The epithelial-stromal ratio was lower with Prunella vulgaris when compared to that of the control (P<0.05). In the reverse transcription-polymerase chain reaction (RT-PCR) of inflammatory cytokine genes, Prunella vulgaris inhibited the expression of $IL-1{\beta}$ and $TNF-{\alpha}$ genes, while it modulated the expression of IL-5, which is an anti-inflammatory cytokine. Conclusions: These findings suggest that Prunella vulgaris may protect the glandular epithelial cells and also inhibit stromal proliferation in association with the immune modulation including the suppression of inflammatory cytokines and promotion of anti-inflammatory cytokine. From theses results, we suggest that Prunella vulgaris could be a useful remedy agent for treating chronic non-bacterial prostatitis.

  • PDF

Nitric Oxide Dependency in Inflammatory Response-related Gene Transcripts Expressed in Lipopolysaccharide-treated RAW 264.7 Cells

  • Pie, Jae-Eun;Yi, Hyeon-Gyu
    • Molecular & Cellular Toxicology
    • /
    • v.5 no.4
    • /
    • pp.354-363
    • /
    • 2009
  • Cytotoxic Nitric oxide (NO) overproduced by inducible NO Synthase (iNOS or NOS2), which was induced in inflammatory reactions and immune responses directly or indirectly affects the functions as host defense and can cause normal tissue damage. Microarray analysis was performed to identify gene profiles of both NO-dependent and -independent transcripts in RAW 264.7 macrophages that use selective NOS2 inhibitors aminoguanidine ($100\;{\mu}M$) and L-canavanine (1 mM). A total of 3,297 genes were identified that were up- or down-regulated significantly over 2-fold in lipopolysaccharide (LPS)-treated macrophages. NO-dependency was determined in the expressed total gene profiles and also within inflammatory conditions-related functional categories. Out of all the gene profiles, 1711 genes affected NO-dependently and -independently in 567 genes. In the categories of inflammatory conditions, transcripts of 16 genes (Pomp, C8a, Ifih1, Irak1, Txnrd1, Ptafr, Scube1, Cd8a, Gpx4, Ltb, Fasl, Igk-V21-9, Vac14, Mbl1, C1r and Tlr6) and 29 geneas (IL-1beta, Mpa2l, IFN activated genes and Chemokine ligands) affected NO-dependently and -independently, respectively. This NO dependency can be applied to inflammatory reaction-related functional classifications, such as cell migration, chemotaxis, cytokine, Jak/STAT signaling pathway, and MAPK signaling pathway. Our results suggest that LPS-induced gene transcripts in inflammation or infection can be classified into physiological and toxic effects by their dependency on the NOS2-mediated NO release.

Screening of Differentially Expressed Genes Related to Bladder Cancer and Functional Analysis with DNA Microarray

  • Huang, Yi-Dong;Shan, Wei;Zeng, Li;Wu, Yang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.8
    • /
    • pp.4553-4557
    • /
    • 2013
  • Objective: The purpose of this study was to identify genes related to bladder cancer with samples from normal and disease cases by microarray chip. Methods: After downloading the gene expression profile GSE3167 from Gene Expression Omnibus database which includes 50 bladder samples, comprising 9 normal and 41 disease samples, differentially expressed genes were identified with packages in R language. The selected differentially expressed genes were further analyzed using bioinformatics methods. Firstly, molecular functions, biological processes and cell component analysis were researched by software Gestalt. Then, software String was used to search interaction relationships among differentially expressed genes, and hub genes of the network were selected. Finally, by using plugins of software Cytoscape, Mcode and Bingo, module analysis of hub-genes was performed. Results: A total of 221 genes were identified as differentially expressed by comparing normal and disease bladder samples, and a network as well as the hub gene C1QBP was obtained from the network. The C1QBP module had the closest relationship to production of molecular mediators involved in inflammatory responses. Conclusion: We obtained differentially expressed genes of bladder cancer by microarray, and both PRDX2 and YWHAZ in the module with hub gene C1QBP were most significantly related to production of molecular mediators involved in inflammatory responses. From knowledge of inflammatory responses and cancer, our results showed that, the hub gene and its module could induce inflammation in bladder cancer. These related genes are candidate bio-markers for bladder cancer diagnosis and might be helpful in designing novel therapies.

Network pharmacology analysis of Jakyakgamchotang with corydalis tuber for anti-inflammation (작약감초탕 가 현호색의 항염증 기전에 대한 네트워크 약리학적 분석)

  • Young-Sik Kim;Hongjun Kim;Han-bin Park;Seungho Lee
    • Herbal Formula Science
    • /
    • v.32 no.1
    • /
    • pp.39-49
    • /
    • 2024
  • Objectives : The purpose of this study was to investigate the molecular targets and pathways of anti-inflammatory effects of Jakyakgamchotang with corydalis tuber (JC) using network pharmacology. Methods : The compounds in constituent herbal medicines of JC were searched in TCM systems pharmacology (TCMSP). Target gene informations of the components were collected using chemical-target interactions database provided by Pubchem. Afterwards, network analysis between compounds and inflammation-related target genes was performed using cytoscape. Go enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed on inflammation-related targets using DAVID database. Results : 70 active compounds related to inflammation were identified, and 295 target genes related to the anti-inflammatory activity of the compound of JC were identified. In the Go biological process DB and KEGG pathway DB, "inflammatory response", "cellular response to lipopolysaccharide", "positive regulation of interleukin-6 production", and "positive regulation of protein kinase B. signaling", "positive regulation of ERK1 and ERK2 cascade", "positive regulation of I-kappaB kinase/NF-kappaB signaling", "negative regulation of apoptotic process", and "PI3K-Akt signaling pathway" were found to be mechanisms related to the anti-inflammatory effects related to the target genes of JC. The main compounds predicted to be involved in the anti-inflammatory effect of JC were quercetin, licochalcone B, (+)-catechin, kaempferol, and emodin. Conclusions : This study provides the molecular targets and potential pathways of JC on inflammation. It can be used as a basic data for using JC for various inflammatory disease in traditional korean medicine clinic.

Pro-Inflammatory Role of S1P3 in Macrophages

  • Heo, Jae-Yeong;Im, Dong-Soon
    • Biomolecules & Therapeutics
    • /
    • v.27 no.4
    • /
    • pp.373-380
    • /
    • 2019
  • Sphingosine kinase 1 and its product, sphingosine 1-phosphate (S1P), as well as their receptors, have been implicated in inflammatory responses. The functions of receptors $S1P_1$ and $S1P_2$ on cell motility have been investigated. However, the function of $S1P_3$ has been poorly investigated. In this study, the roles of $S1P_3$ on inflammatory response were investigated in primary peritoneal macrophages. $S1P_3$ receptor was induced along with sphingosine kinase 1 by stimulation of lipopolysaccharide (LPS). LPS treatment induced inflammatory genes, such iNOS, COX-2, $IL-1{\beta}$, IL-6 and $TNF-{\alpha}$. TY52156, an antagonist of $S1P_3$ suppressed the induction of inflammatory genes in a concentration dependent manner. Suppression of iNOS and COX-2 induction was further confirmed by western blotting and NO measurement. Suppression of $IL-1{\beta}$ induction was also confirmed by western blotting and ELISA. Caspase 1, which is responsible for $IL-1{\beta}$ production, was similarly induced by LPS and suppressed by TY52156. Therefore, we have shown $S1P_3$ induction in the inflammatory conditions and its pro-inflammatory roles. Targeting $S1P_3$ might be a strategy for regulating inflammatory diseases.