• Title/Summary/Keyword: infinite type

Search Result 208, Processing Time 0.026 seconds

Analytical approaches to the charging process of stratified thermal storage tanks with variable inlet temperature (변온유입 성층축열조의 충전과정에 대한 해석적 접근)

  • Yoo, Hoseon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.1
    • /
    • pp.43-54
    • /
    • 1997
  • This paper presents an approximate analytical solution to a two-region one-dimensional model for the charging process of stratified thermal storage tanks with variable inlet temperature in the presence of momentum-induced mixing. Based on the superposition principle, an arbitrary-varying inlet temperature is decomposed into inherent discontinuous steps and continuous intervals approximated as a finite number of piecewise linear functions. This approximation allows the temperature of the upper perfectly-mixed layer to be expressed in terms of constant, linear and exponential functions with respect to time. Applying the Laplace transform technique to the model equation for the lower thermocline layer subject to each of three representative interfacial conditions yields compact-form solutions, a linear combination of which constitutes the final temperature profile. A systematic method for deriving solutions to the plug-flow problem having polynomial-type boundary conditions is also established. The effect of adiabatic exit boundary on solution behaviors proves to be negligible under the actual working conditions, which justifies the assumption of semi-infinite domain introduced in the solution procedure. Finally, the approximate solution is validated by comparing it with an exact solution obtained for a specific variation of inlet temperature. Excellent agreements between them suffice to show the necessity and utility of this work.

  • PDF

The Problem of Collinear Cracks in a Layered Half-Plane with a Functionally Graded Nonhomogeneous Interfacial Zone (비균질 구배기능 계면영역을 고려한 적층 만무한체의 동일선상 복수균열 해석)

  • Jin, Tae-Eun;Choe, Hyung-Jip;Lee, Kang-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.4
    • /
    • pp.1275-1289
    • /
    • 1996
  • The plane elasticity problem of collinear cracks in a layered medium is investigated. The medium is modeled as bonded structure constituted from a surface layer and a semi-infinite substrate. Along the bond line between the two dissimilar homegeneous constituents, it is assumed that as interfacial zone having the functionally graded, nonhomogeneous elastic modulus exists. The layered medium contains three collinear cracks, one in each constituent material oriented perpendicular to the nominal interfaces. The stiffness matrix formulation is utilized and a set of homogeneous conditions relevant to the given problem is readily satisfied. The proposed mixed boundary value problem is then represented in the form of a system of integral equations with Cauchy-type singular kernels. The stress intensity factors are defined from the crack-tip stress fields possessing the standard square-root singular behavior. The resulting values of stress intensity factors mainly address the interactions among the cracks for various crack sizes and material combinations.

Slender piezoelectric beams with resistive-inductive electrodes - modeling and axial wave propagation

  • Schoeftner, Juergen;Buchberger, Gerda;Benjeddou, Ayech
    • Smart Structures and Systems
    • /
    • v.18 no.2
    • /
    • pp.335-354
    • /
    • 2016
  • This contribution presents an extended one-dimensional theory for piezoelectric beam-type structures with non-ideal electrodes. For these types of electrodes the equipotential area condition is not satisfied. The main motivation of our research is originated from passive vibration control: when an elastic structure is covered by several piezoelectric patches that are linked via resistances and inductances, vibrational energy is efficiently dissipated if the electric network is properly designed. Assuming infinitely small piezoelectric patches that are connected by an infinite number of electrical, in particular resistive and inductive elements, one obtains the Telegrapher's equation for the voltage across the piezoelectric transducer. Embedding this outcome into the framework of Bernoulli-Euler, the final equations are coupled to the wave equations for the longitudinal motion of a bar and to the partial differential equations for the lateral motion of the beam. We present results for the wave propagation of a longitudinal bar for several types of electrode properties. The frequency spectra are computed (phase angle, wave number, wave speed), which point out the effect of resistive and inductive electrodes on wave characteristics. Our results show that electrical damping due to the resistivity of the electrodes is different from internal (=strain velocity dependent) or external (=velocity dependent) mechanical damping. Finally, results are presented, when the structure is excited by a harmonic single force, yielding that resistive-inductive electrodes are suitable candidates for passive vibration control that might be of great interest for practical applications in the future.

A Study on the Optimal Design Fuzzy Type Stabilizing Controller using Genetic Algorithm (유전 알고리즘을 이용한 퍼지형 안전화 제어기의 최적 설계에 관한 연구)

  • Lee, Heung-Jae;Lim, Chan-Ho;Yoon, Byong-Gyu;Lim, Hwa-Young;Song, Ja-Youn
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.11
    • /
    • pp.1382-1387
    • /
    • 1999
  • This paper presents an optimal fuzzy power system stabilizer to damp out low frequency oscillation. So far fuzzy controllers have been applied to power system stabilizing controllers due to its excellent properties on the nonlinear systems. But the design process of fuzzy logic power system stabilizer requires empirical and heuristic knowledge of human experts as well as many trial-and-errors in general. This paper presents and optimal design method of the fuzzy logic stabilizer using the genetic algorithm. Non-symmetric membership functions are optimally tuned over an evaluation function. The present inputs of fuzzy stabilizer are torque angle error and the change of torque angle error without loss of generality. The coding method used in this paper is concatenated binary mapping. Each linguistic fuzzy variable, defined as the peak of a membership function, is assigned by the mapping from a minimum value to a maximum value using eight bits. The tournament selection and the elitism are used to keep the worthy individuals in the next generation. The proposed system is applied to the one-machine infinite-bus model of a power system, and the results showed a promising possibility.

  • PDF

Finding Pseudo Periods over Data Streams based on Multiple Hash Functions (다중 해시함수 기반 데이터 스트림에서의 아이템 의사 주기 탐사 기법)

  • Lee, Hak-Joo;Kim, Jae-Wan;Lee, Won-Suk
    • Journal of Information Technology Services
    • /
    • v.16 no.1
    • /
    • pp.73-82
    • /
    • 2017
  • Recently in-memory data stream processing has been actively applied to various subjects such as query processing, OLAP, data mining, i.e., frequent item sets, association rules, clustering. However, finding regular periodic patterns of events in an infinite data stream gets less attention. Most researches about finding periods use autocorrelation functions to find certain changes in periodic patterns, not period itself. And they usually find periodic patterns in time-series databases, not in data streams. Literally a period means the length or era of time that some phenomenon recur in a certain time interval. However in real applications a data set indeed evolves with tiny differences as time elapses. This kind of a period is called as a pseudo-period. This paper proposes a new scheme called FPMH (Finding Periods using Multiple Hash functions) algorithm to find such a set of pseudo-periods over a data stream based on multiple hash functions. According to the type of pseudo period, this paper categorizes FPMH into three, FPMH-E, FPMH-PC, FPMH-PP. To maximize the performance of the algorithm in the data stream environment and to keep most recent periodic patterns in memory, we applied decay mechanism to FPMH algorithms. FPMH algorithm minimizes the usage of memory as well as processing time with acceptable accuracy.

A Cryptography Algorithm using Telescoping Series (망원급수를 이용한 암호화 알고리즘)

  • Choi, Eun Jung;Sakong, Yung;Park, Wang Keun
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.9 no.4
    • /
    • pp.103-110
    • /
    • 2013
  • In Information Technology era, various amazing IT technologies, for example Big Data, are appearing and are available as the amount of information increase. The number of counselling for violation of personal data protection is also increasing every year that it amounts to over 160,000 in 2012. According to Korean Privacy Act, in the case of treating unique personal identification information, appropriate measures like encipherment should be taken. The technologies of encipherment are the most basic countermeasures for personal data invasion and the base elements in information technology. So various cryptography algorithms exist and are used for encipherment technology. Therefore studies on safer new cryptography algorithms are executed. Cryptography algorithms started from classical replacement enciphering and developed to computationally secure code to increase complexity. Nowadays, various mathematic theories such as 'factorization into prime factor', 'extracting square root', 'discrete lognormal distribution', 'elliptical interaction curve' are adapted to cryptography algorithms. RSA public key cryptography algorithm which was based on 'factorization into prime factor' is the most representative one. This paper suggests algorithm utilizing telescoping series as a safer cryptography algorithm which can maximize the complexity. Telescoping series is a type of infinite series which can generate various types of function for given value-the plain text. Among these generated functions, one can be selected as a original equation. Some part of this equation can be defined as a key. And then the original equation can be transformed into final equation by improving the complexity of original equation through the command of "FullSimplify" of "Mathematica" software.

Dynamic analysis of concrete gravity dam-reservoir systems by wavenumber approach in the frequency domain

  • Lotfi, Vahid;Samii, Ali
    • Earthquakes and Structures
    • /
    • v.3 no.3_4
    • /
    • pp.533-548
    • /
    • 2012
  • Dynamic analysis of concrete gravity dam-reservoir systems is an important topic in the study of fluid-structure interaction problems. It is well-known that the rigorous approach for solving this problem relies heavily on employing a two-dimensional semi-infinite fluid element. The hyper-element is formulated in frequency domain and its application in this field has led to many especial purpose programs which were demanding from programming point of view. In this study, a technique is proposed for dynamic analysis of dam-reservoir systems in the context of pure finite element programming which is referred to as the wavenumber approach. In this technique, the wavenumber condition is imposed on the truncation boundary or the upstream face of the near-field water domain. The method is initially described. Subsequently, the response of an idealized triangular dam-reservoir system is obtained by this approach, and the results are compared against the exact response. Based on this investigation, it is concluded that this approach can be envisaged as a great substitute for the rigorous type of analysis.

The crystal and molecular structure of sulfisoxazole

  • Koo, Chung-Hoe;Shin, Hyun-So;Cho, Sung-Il
    • Archives of Pharmacal Research
    • /
    • v.5 no.2
    • /
    • pp.79-86
    • /
    • 1982
  • Sulfisoxazole, $C-{11}H_{13}N_{3}S$, crystallized in the orthohombic system, space group Pbca, with a = 14.492(1), b = 11.563(1), c = 14.900(2) $\AA$ and Z = 8. Intensities for 1867(1360 observed) unique reflections were measured on a four-circle diffractometer wirh CuKa radiation ($\lambda$ = 1.5418$\AA$). The structure was solved by heavy atom methods and refined by full-matrix least-squares procedures to a final R of 0.094. The benzene ring plane makes an angle of $68^{\circ}C$ with the plane of the isoxazole ring, which is plannar. The conformational angle formed by the torsional angle C(4)-S-N(2)-C(7) is $54^{\circ}C$. There are two intermolecular hydrogen bonds in the structure. One of them is of the type N-H...H with the length 2.915$\AA$. Thus two dimensional networks of hydrogen bonds form infinite moelcular sheets parallel to the (001) plane. Adjacent sheets are bound together by van der Waals forces.

  • PDF

Performance of under foundation shock mat in reduction of railway-induced vibrations

  • Sadeghi, Javad;Haghighi, Ehsan;Esmaeili, Morteza
    • Structural Engineering and Mechanics
    • /
    • v.78 no.4
    • /
    • pp.425-437
    • /
    • 2021
  • Under foundation shock mats have been used in the current practice in order to reduce/damp vibrations received by buildings through the surrounding environment. Although some investigations have been made on under foundation shock mats performance, their effectiveness in the reduction of railway induced-vibrations has not been fully studied, particularly with the consideration of underneath soil media. In this regard, this research is aimed at investigating performance of shock mat used beneath building foundation for reduction of railway induced-vibrations, taking into account soil-structure interaction. For this purpose, a 2D finite/infinite element model of a building and its surrounding soil media was developed. It includes an elastic soil media, a railway embankment, a shock mat, and the building. The model results were validated using an analytical solution reported in the literature. The performance of shock mats was examined by an extensive parametric analysis on the soil type, bedding modulus of shock mat and dominant excitation frequency. The results obtained indicated that although the shock mat can substantially reduce the building vibrations, its performance is significantly influenced by its underneath soil media. The softer the soil, the lower the shock mat efficiency. Also, as the train excitation frequency increases, a better performance of shock-mats is observed. A simplified model/method was developed for prediction of shock mat effectiveness in reduction of railway-induced vibrations, making use of the results obtained.

Para-virtualized Multi-OS Management Technology for Stable Operation of Smart Navigational Aid Integrated Platform (스마트 항로표지 통합 플랫폼의 안정 운영을 위한 반가상화 다중 OS 관리 기술)

  • In-Pyo Cho;Jae-Kyu Lee;Sang-Yub Lee;Ki-Won Kwon
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2021.11a
    • /
    • pp.23-24
    • /
    • 2021
  • Among the failure cases of the existing navigation aids, the SW and operating system errors of the RTU, the embedded computer for navigation aids, account for about 10%. The causes of SW errors have an infinite number of cases, and it is impossible to correct them all. In this paper, we proposed a paravirtualized multi-OS Docker container utilization technique as a stable operation technique for smart navigational aids, which have recently increased the amount of computation and complexity of SW services that need to be managed. It is proposed to divide containers according to service type, expected load, and error frequency and load the service.

  • PDF