• Title/Summary/Keyword: infinite triangular matrices

Search Result 3, Processing Time 0.017 seconds

LINEAR RANK PRESERVERS ON INFINITE TRIANGULAR MATRICES

  • SLOWIK, ROKSANA
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.1
    • /
    • pp.73-88
    • /
    • 2016
  • We consider ${\mathcal{T}}_{\infty}(F)$ - the space of all innite upper triangular matrices over a eld F. We give a description of all linear maps that satisfy the property: if rank(x) = 1, then $rank({\phi}(x))=1$ for all $x{\in}{\mathcal{T}}_{\infty}(F)$. Moreover, we characterize all injective linear maps on ${\mathcal{T}}_{\infty}(F)$ such that if rank(x) = k, then $rank({\phi}(x))=k$.

INJECTIVE LINEAR MAPS ON τ(F) THAT PRESERVE THE ADDITIVITY OF RANK

  • Slowik, Roksana
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.1
    • /
    • pp.277-287
    • /
    • 2017
  • We consider ${\tau}_{\infty}(F)$ - the space of upper triangular infinite matrices over a field F. We investigate injective linear maps on this space which preserve the additivity of rank, i.e., the maps ${\phi}$ such that rank(x + y) = rank(x) + rank(y) implies rank(${\phi}(x+y)$) = rank(${\phi}(x)$) + rank(${\phi}(y)$) for all $x,\;y{\in}{\tau}_{\infty}(F)$.

POSINORMAL TERRACED MATRICES

  • Rhaly, H. Crawford, Jr.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.1
    • /
    • pp.117-123
    • /
    • 2009
  • This paper is a study of some properties of a collection of bounded linear operators resulting from terraced matrices M acting through multiplication on ${\ell}^2$; the term terraced matrix refers to a lower triangular infinite matrix with constant row segments. Sufficient conditions are found for M to be posinormal, meaning that $MM^*=M^*PM$ for some positive operator P on ${\ell}^2$; these conditions lead to new sufficient conditions for the hyponormality of M. Sufficient conditions are also found for the adjoint $M^*$ to be posinormal, and it is observed that, unless M is essentially trivial, $M^*$ cannot be hyponormal. A few examples are considered that exhibit special behavior.