Browse > Article
http://dx.doi.org/10.4134/JKMS.2016.53.1.073

LINEAR RANK PRESERVERS ON INFINITE TRIANGULAR MATRICES  

SLOWIK, ROKSANA (INSTITUTE OF MATHEMATICS SILESIAN UNIVERSITY OF TECHNOLOGY)
Publication Information
Journal of the Korean Mathematical Society / v.53, no.1, 2016 , pp. 73-88 More about this Journal
Abstract
We consider ${\mathcal{T}}_{\infty}(F)$ - the space of all innite upper triangular matrices over a eld F. We give a description of all linear maps that satisfy the property: if rank(x) = 1, then $rank({\phi}(x))=1$ for all $x{\in}{\mathcal{T}}_{\infty}(F)$. Moreover, we characterize all injective linear maps on ${\mathcal{T}}_{\infty}(F)$ such that if rank(x) = k, then $rank({\phi}(x))=k$.
Keywords
linear rank preservers; infinite triangular matrices;
Citations & Related Records
연도 인용수 순위
  • Reference
1 L. B. Beasley, Linear transformations which preserve fixed rank, Linear Algebra Appl. 40 (1981), 183-187.   DOI
2 L. B. Beasley, Rank-k-preservers and preservers of sets of ranks, Linear Algebra Appl. 55 (1983), 11-17.   DOI
3 L. B. Beasley and T. J. Laffey, Linear operators on matrices: the invariance of rank-k matrices, Linear Algebra Appl. 133 (1990), 175-184.   DOI
4 L. B. Beasley, Erratum: "Linear operators on matrices: the invariance of rank-k matrices" [Linear Algebra Appl. 133 (1990), 175-184], Linear Algebra Appl. 180 (1993), 2.
5 J. Bell and A. R. Sourour, Additive rank-one preserving mappings on triangular matrix algebras, Linear Algebra Appl. 312 (2000), no. 1-3, 13-33.   DOI
6 P. Botta, Linear maps preserving rank less than or equal to one, Linear and Multilinear Algebra 20 (1987), no. 3, 197-201.   DOI
7 C. G. Cao, Modular automorphisms of upper triangular matrices over a commutative ring preserving rank one, Northeast. Math. J. 10 (1994), no. 4, 496-502.
8 C. G. Cao and X. Zhang, Additive surjections preserving rank one and applications, Georgian Math. J. 11 (2004), no. 2, 209-217.
9 W. L. Chooi and M. H. Lim, Linear preservers on triangular matrices, Linear Algebra Appl. 269 (1998), 241-255.   DOI
10 D. Z. Djokovic, Linear transformations of tensor products preserving a fixed rank, Paci c J. Math. 30 (1969), 411-414.   DOI
11 B. Kuzma, Additive mappings preserving rank-one idempotents, ActaMath. Sin. (Engl. Ser.) 21 (2005), no. 6, 1399-1406.   DOI
12 M. Marcus and B. N. Moyls, Linear transformations on algebras of matrices, Canad. J. Math. 11 (1959), 61-66.   DOI
13 M. Marcus, Transformations on tensor product spaces, Paci c J. Math. 9 (1959), 1215-1221.   DOI
14 H. Minc, Linear transformations on matrices: rank 1 preservers and determinant preservers, Linear and Multilinear Algebra 4 (1976/77), no. 4, 265-272.
15 W. C. Waterhouse, On linear transformations preserving rank one matrices over commutative rings, Linear and Multilinear Algebra 17 (1985), no. 2, 101-106.   DOI
16 L. Molnar and P. Semrl, Some linear preserver problems on upper triangular matrices, Linear and Multilinear Algebra 45 (1998), no. 2-3, 189-206.   DOI
17 M. Omladic and P. Semrl, Additive mappings preserving operators of rank one, Linear Algebra Appl. 182 (1993), 239-256.   DOI
18 R. S lowik, Maps on in nite triangular matrices preserving idempotents, Linear and Multilinear Algebra 62 (2014), no. 7, 938-964.   DOI