• 제목/요약/키워드: infinite medium

검색결과 132건 처리시간 0.023초

Rayleigh wave in an anisotropic heterogeneous crustal layer lying over a gravitational sandy substratum

  • Kakar, Rajneesh;Kakar, Shikha
    • Geomechanics and Engineering
    • /
    • 제10권2호
    • /
    • pp.137-154
    • /
    • 2016
  • The purpose of this paper is to study the propagation of Rayleigh waves in an anisotropic heterogeneous crustal layer over a gravitational semi-infinite sandy substratum. It is assumed that the heterogeneity in the crustal layer arises due to exponential variation in elastic coefficients and density whereas the semi-infinite sandy substratum has homogeneous sandiness parameters. The coupled effects of heterogeneity, anisotropy, sandiness parameters and gravity on Rayleigh waves are discussed analytically as well as numerically. The dispersion relation is obtained in determinant form. The proposed model is solved to obtain the different dispersion relations for the Rayleigh wave in the elastic medium of different properties. The results presented in this study may be attractive and useful for mathematicians, seismologists and geologists.

Fourier 방법을 이용한 지진파 전달해석 (An Analysis of Seismic Wave Propagation by Using the Fourier Method)

  • 김현실
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1998년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Spring 1998
    • /
    • pp.399-406
    • /
    • 1998
  • Transient acoustic and elastic wave propagation in inhomogeneous media are studied by using the Fourier method. To verify the proposed numerical scheme, several examples having analytic solutions are considered, where two different semi-infinite media are in contact along a plane boundary. The comparisons of numerical results by the Fourier method and analytic solutions show good agreements. In addition, the Fourier method is applied to a layered half-plane, in which an elastic semi-infinite medium is covered by an elastic layer of finite thickness. It is showed how to derive the analytic solutions by using the Cagniard-de Hoop method. The numerical solutions are in excellent agreements with analytic results.

  • PDF

Theoretical analysis of transient wave propagation in the band gap of phononic system

  • Lin, Yi-Hsien;Ma, Chien-Ching
    • Interaction and multiscale mechanics
    • /
    • 제6권1호
    • /
    • pp.15-29
    • /
    • 2013
  • Phononic system composed of periodical elastic structures exhibit band gap phenomenon, and all elastic wave cannot propagate within the band gap. In this article, we consider one-dimensional binary materials which are periodically arranged as a 20-layered medium instead of infinite layered system for phononic system. The layered medium with finite dimension is subjected to a uniformly distributed sinusoidal loading at the upper surface, and the bottom surface is assumed to be traction free. The transient wave propagation in the 20-layered medium is analyzed by Laplace transform technique. The analytical solutions are presented in the transform domain and the numerical Laplace inversion (Durbin's formula) is performed to obtain the transient response in time domain. The numerical results show that when a sinusoidal loading with a specific frequency within band gap is applied, stress response will be significantly decayed if the receiver is away from the source. However, when a sinusoidal force with frequency is out of band gap, the attenuation of the stress response is not obvious as that in the band gap.

EFFECTS OF SORET AND DUFOUR ON NATURAL CONVECTIVE FLUID FLOW PAST A VERTICAL PLATE EMBEDDED IN POROUS MEDIUM IN PRESENCE OF THERMAL RADIATION VIA FEM

  • RAJU, R. SRINIVASA
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제20권4호
    • /
    • pp.309-332
    • /
    • 2016
  • Finite element method has been applied to solve the fundamental governing equations of natural convective, electrically conducting, incompressible fluid flow past an infinite vertical plate surrounded by porous medium in presence of thermal radiation, viscous dissipation, Soret and Dufour effects. In this research work, the results of coupled partial differential equations are found numerically by applying finite element technique. The sway of significant parameters such as Soret number, Dufour number, Grashof number for heat and mass transfer, Magnetic field parameter, Thermal radiation parameter, Permeability parameter on velocity, temperature and concentration evaluations in the boundary layer region are examined in detail and the results are shown in graphically. Furthermore, the effect of these parameters on local skin friction coefficient, local Nusselt number and Sherwood numbers is also investigated. A very good agreement is noticed between the present results and previous published works in some limiting cases.

지하철운행 하중에 대한 인접 구조물의 진동해석 (Dynamic Analysis of Building Structures for Subway Transit Loading)

  • 윤정방;이동근;정진상;김두기
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1995년도 가을 학술발표회 논문집
    • /
    • pp.266-273
    • /
    • 1995
  • An efficient dynamic analysis method is developed f3r building structures subjected to ground home loadings. The soil medium is modeled using the finite elements and infinite elements. Then, the dynamic stiffness of the soil medium is calculated at the interfacial nodes between the soil and the building foundation. The equivalent subway loading at the interfacial nodes are obtained from the wave propagation analysis of the subway loading through the soil medium. The dynamic response of the building Is computed using the mode superposition method equipped with gauss-seidel iteration technique. The analysis is carried out by the frequency domain and the time domain methods.

  • PDF

FDTD를 이용한 격자형 페라이트 전파흡수체 특성 해석 (FDTD Analysis of the Absorption Characteristics for Grid Ferrite Electromagnetic Wave Absorber)

  • 이재용;정연춘;명노훈
    • 한국전자파학회논문지
    • /
    • 제9권4호
    • /
    • pp.483-490
    • /
    • 1998
  • The reflectivity of a grid ferrite electromagnetic wave absorber is analyzed using finite difference time domain (FDTD) method, which is usually used in anechoic chambers for EMI / EMS test. The frequency dispersive characteristics of ferrite medium and its boundary condition are modeled using magnetic flux in addition to E- and H-fields. By applying Floquets theorem, FDTD analysis of the grid ferrite absorber with periodic infinite array is simplified as a unit cell problem. The method of homogenization which is mainly utilized in the calculation of absorber reflectivity as a low frequency technique takes only into account volume fraction of the unit cell of the absorber except for the structure of medium geometry. However, the presented method in this paper can analyze the geometry effect of the unit cell with its medium characteristics up to high frequency region.

  • PDF

지반-구조물 상호작용을 고려한 원통형 유체저장탱크의 지진해석 (Earthquake Analaysis of Cylindrical Liquid Storage tanks Considering Effects of Soil-Structure Interaction)

  • 김재민
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1999년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall
    • /
    • pp.83-90
    • /
    • 1999
  • This paper presents a method of seismic analysis for a cylindrical liquid storage structure on horizontally layered half-space considering the effects of the interior fluid and exterior soil medium in the frequency domain. the horizontal and rocking motions of the structures are included in this study. The fluid motion is expressed in terms of analytical velocity potential function which can be obtained by solving the boundary value problem including the sloshing behavior of the fluid as well as deformed configuration of the structure. The effect of the fluid is included in the equation of motion as the impulsive added mass and a frequency-dependent convective added mass along the nodes on the wetted boundary with structure. The soil medium is presented using the 3-D axisymmetric finite elements and dynamic infinite elements. The present method can be applied to the structures embedded in ground as well as on ground since it models the soil medium directly as well as the structure. For the purpose of vertification dynamci characteristics of a tank on homogeneous half-space is analyzed. Comparison of the present results with those by others shows good agreement.

  • PDF

두 무한 평면 사이의 선형 이방성 산란 매질에서의 열전달 (Heat Transfer with Linearly Anisotropic Scattering Medium in a Plane Layer)

  • 변기홍
    • 대한설비공학회지:설비저널
    • /
    • 제17권4호
    • /
    • pp.435-441
    • /
    • 1988
  • The purpose of this study is to apply the zone method expressions for a gray, absorbing, emitting, and linearly anisotropic scattering medium enclosed in an infinite plane layer to evaluate heat transfer applications. The medium is assumed to be homogeneous and has a refractive index of unity. The boundary surfaces are opaque and gray, diffusely emitting and reflecting at a constant temperature. Radiative equilibrium condition, combined conductive and radiative heat transfer, and thermal ignition are studied in terms of the governing parameters, and the results are compared with previous studies. Wall heat flux results agree well with those of others. Except for the minor discrepancies observed for some cases, temperature results also agree well with those of previous studies. Good agreement with results from other methods indicates the accuracy of the zone method as well as its compatibility with other modes of heat transfer.

  • PDF

Fluid-structure-soil interaction analysis of cylindrical liquid storage tanks subjected to horizontal earthquake loading

  • Kim, Jae-Min;Chang, Soo-Hyuk;Yun, Chung-Bang
    • Structural Engineering and Mechanics
    • /
    • 제13권6호
    • /
    • pp.615-638
    • /
    • 2002
  • This paper presents a method of seismic analysis for a cylindrical liquid storage structure considering the effects of the interior fluid and exterior soil medium in the frequency domain. The horizontal and rocking motions of the structure are included in this study. The fluid motion is expressed in terms of analytical velocity potential functions, which can be obtained by solving the boundary value problem including the deformed configuration of the structure as well as the sloshing behavior of the fluid. The effect of the fluid is included in the equation of motion as the impulsive added mass and the frequency-dependent convective added mass along the nodes on the wetted boundary of the structure. The structure and the near-field soil medium are represented using the axisymmetric finite elements, while the far-field soil is modeled using dynamic infinite elements. The present method can be applied to the structure embedded in ground as well as on ground, since it models both the soil medium and the structure directly. For the purpose of verification, earthquake response analyses are performed on several cases of liquid tanks on a rigid ground and on a homogeneous elastic half-space. Comparison of the present results with those by other methods shows good agreement. Finally, an application example of a reinforced concrete tank on a horizontally layered soil with a rigid bedrock is presented to demonstrate the importance of the soil-structure interaction effects in the seismic analysis for large liquid storage tanks.

Influence of initial stresses on the critical velocity of the moving load acting in the interior of the hollow cylinder surrounded by an infinite elastic medium

  • Akbarov, Surkay D.;Mehdiyev, Mahir A.
    • Structural Engineering and Mechanics
    • /
    • 제66권1호
    • /
    • pp.45-59
    • /
    • 2018
  • The bi-material elastic system consisting of the pre-stressed hollow cylinder and pre-stresses surrounding infinite elastic medium is considered and it is assumed that the mentioned initial stresses in this system are caused with the compressing or stretching uniformly distributed normal forces acting at infinity in the direction which is parallel to the cylinder's axis. Moreover, it is assumed that on the internal surface of the cylinder the ring load which moves with constant velocity acts and within these frameworks it is required to determine the influence of the aforementioned initial stresses on the critical velocity of the moving load. The corresponding investigations are carried out within the framework of the so-called three-dimensional linearized theory of elastic waves in initially stresses bodies and the axisymmetric stress-strain state case is considered. The "moving coordinate system" method is used and the Fourier transform is employed for solution to the formulated mathematical problem and Fourier transformation of the sought values are determined analytically. However, the originals of those are determined numerically with the use of the Sommerfeld contour method. The critical velocity is determined from the criterion, according to which, the magnitudes of the absolute values of the stresses and displacements caused with the moving load approaches an infinity. Numerical results on the influence of the initial stresses on the critical velocity and interface normal and shear stresses are presented and discussed. In particular, it is established that the initial stretching (compressing) of the constituents of the system under consideration causes a decrease (an increase) in the values of the critical velocity.