References
- Abd-Alla, A.M. and Ahmed, S.M. (1997), "Rayleigh waves in an orthotropic thermoelastic medium under gravity field and initial stress", Earth Moon Planets, 75(3), 185-197. https://doi.org/10.1007/BF02592996
- Abd-Alla, A.M., Mahmoud, S.R., Abo-Dahab, S.M. and Helmy, M.I. (2010), "Influences of rotation, magnetic field, initial stress, and gravity on Rayleigh waves in a homogeneous orthotropic elastic halfspace", Appl. Math. Sci., 4(2), 91-108.
- Abd-Alla, A.M., Abo-Dahab, S.M. and Bayones, F.S. (2011), "Rayleigh waves in generalized magnetothermo-viscoelastic granular medium under the influence of rotation, gravity field, and initial stress", Math. Prob. Eng., 1-47.
- Acharya, D.P. and Monda, A. (2002), "Propagation of Rayleigh surface waves with small wavelengths in nonlocal visco-elastic solids", Sadhana, 27(6), 605-612. https://doi.org/10.1007/BF02703353
- Addy, S.K. and Chakraborty, N. (2005), "Rayleigh waves in a viscoelastic half-space under initial hydrostatic stress in presence of the temperature field", Int. J. Math. Math. Sci., 24, 3883-3894.
- Biot, M.A. (1965), Mechanics of Incremental Deformations, John Wiley & Sons, New York, NY, USA.
- Bromwich, T.J. (1898), "On the influence of gravity on elastic waves, and, in particular, on the vibrations of an elastic globe", Proc. London Math. Soc., 30(1), 98-120.
- Favretto-Cristini, N., Komatitsch, D., Carcione, J.M. and Cavallini, F. (2011), "Elastic surface waves in crystals. Part 1: Review of the physics", Ultrasonics, 51(6), 653-660. https://doi.org/10.1016/j.ultras.2011.02.007
- Ghatuary, R. and Chakraborty, N. (2015), "Thermomagnetic effect on the propagation of Rayleigh waves in an isotropic homogeneous elastic half-space under initial stress", Cogent Engineering, 2(1), 1026539. https://doi.org/10.1080/23311916.2015.1026539
- Gupta, I.S. (2013), "Propagation of Rayleigh waves in a prestressed layer over a prestressed half-space", Frontiers in Geotechnical Engineering (FGE), 2(1), 16-22.
- Kumar, R. and Singh, J. (2011), "Propagation of Rayleigh waves through the surface of an elastic solid medium in the presence of a mountain", Int. J. Appl. Sci. Technol., 1(4), 50-58.
- Love, A.E.H. (1911), Some Problems of Geodynamics, Cambridge University Press, Cambridge, UK.
- Pal, P.C., Kumar, S. and Bose, S. (2014), "Propagation of Rayleigh waves in anisotropic layer overlying a semi-infinite sandy medium", Ain Shams Eng. J., 6(2), 621-627. DOI: 10.1016/j.asej.2014.11.003
- Sethi, M., Gupta, K.C., Sharma, R. and Malik, D. (2012), "Propagation of Rayleigh waves in nonhomogeneous elastic half-space of orthotropic material under initial compression and influence of gravity", Math. Aeterna, 2(10), 901-910.
- Singh, B. and Bala, K. (2013), "On Rayleigh wave in two-temperature generalized thermoelastic medium without energy dissipation", Appl. Math., 4(1), 107-112.
- Vashishth, A.K. and Sharma, M.D. (2008), "Propagation of plane waves in poroviscoelastic anisotropic media", Appl. Math. Mech., 29(9), 1141-1153. https://doi.org/10.1007/s10483-008-0904-x
- Vinh, P.C. (2009), "Explicit secular equations of Rayleigh waves in elastic media under the influence of gravity and initial stress", Appl. Math. Comput., 215(1), 395-404. https://doi.org/10.1016/j.amc.2009.05.014
- Vinh, P.C. and Seriani, G. (2009), "Explicit secular equations of Rayleigh waves in a non-homogeneous orthotropic elastic medium under the influence of gravity", Wave Motion, 46(7), 427-434. https://doi.org/10.1016/j.wavemoti.2009.04.003
- Vishwakarma, S.K. and Gupta, S. (2014), "Rayleigh wave propagation: A case wise study in a layer over a half space under the effect of rigid boundary", Arch. Civil Mech. Eng., 14(1), 181-189. https://doi.org/10.1016/j.acme.2013.07.007
- Weiskopf, W.H. (1945), "Stresses in soils under a foundation", J. Frank. Inst., 239(6), 445-453. https://doi.org/10.1016/0016-0032(45)90189-X
- Wilson, J.T. (1942), "Surface waves in a heterogeneous medium", Bull. Seismol. Soc. Am., 32(4), 297-305.
Cited by
- On the elastic parameters of the strained media vol.67, pp.1, 2016, https://doi.org/10.12989/sem.2018.67.1.053
- Shear wave propagation in a slightly compressible finitely deformed layer over a foundation with pre-stressed fibre-reinforced stratum and dry sandy viscoelastic substrate vol.31, pp.5, 2016, https://doi.org/10.1080/17455030.2019.1631503
- Frequency shifts and thermoelastic damping in different types of Nano-/Micro-scale beams with sandiness and voids under three thermoelasticity theories vol.510, pp.None, 2021, https://doi.org/10.1016/j.jsv.2021.116301