• Title/Summary/Keyword: inference rate

Search Result 207, Processing Time 0.027 seconds

Probabilistic Approach for Predicting Degradation Characteristics of Corrosion Fatigue Crack (환경피로균열 열화특성 예측을 위한 확률론적 접근)

  • Lee, Taehyun;Yoon, Jae Young;Ryu, KyungHa;Park, Jong Won
    • Journal of Applied Reliability
    • /
    • v.18 no.3
    • /
    • pp.271-279
    • /
    • 2018
  • Purpose: Probabilistic safety analysis was performed to enhance the safety and reliability of nuclear power plants because traditional deterministic approach has limitations in predicting the risk of failure by crack growth. The study introduces a probabilistic approach to establish a basis for probabilistic safety assessment of passive components. Methods: For probabilistic modeling of fatigue crack growth rate (FCGR), various FCGR tests were performed either under constant load amplitude or constant ${\Delta}K$ conditions by using heat treated X-750 at low temperature with adequate cathodic polarization. Bayesian inference was employed to update uncertainties of the FCGR model using additional information obtained from constant ${\Delta}K$ tests. Results: Four steps of Bayesian parameter updating were performed using constant ${\Delta}K$ test results. The standard deviation of the final posterior distribution was decreased by a factor of 10 comparing with that of the prior distribution. Conclusion: The method for developing a probabilistic crack growth model has been designed and demonstrated, in the paper. Alloy X-750 has been used for corrosion fatigue crack growth experiments and modeling. The uncertainties of parameters in the FCGR model were successfully reduced using the Bayesian inference whenever the updating was performed.

Undecided inference using logistic regression for credit evaluation (신용평가에서 로지스틱 회귀를 이용한 미결정자 추론)

  • Hong, Chong-Sun;Jung, Min-Sub
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.2
    • /
    • pp.149-157
    • /
    • 2011
  • Undecided inference could be regarded as a missing data problem such as MARand MNAR. Under the assumption of MAR, undecided inference make use of logistic regression model. The probability of default for the undecided group is obtained with regression coefficient vectors for the decided group and compare with the probability of default for the decided group. And under the assumption of MNAR, undecide dinference make use of logistic regression model with additional feature random vector. Simulation results based on two kinds of real data are obtained and compared. It is found that the misclassification rates are not much different from the rate of rawdata under the assumption of MAR. However the misclassification rates under the assumption of MNAR are less than those under the assumption of MAR, and as the ratio of the undecided group is increasing, the misclassification rates is decreasing.

Soft computing techniques in prediction Cr(VI) removal efficiency of polymer inclusion membranes

  • Yaqub, Muhammad;EREN, Beytullah;Eyupoglu, Volkan
    • Environmental Engineering Research
    • /
    • v.25 no.3
    • /
    • pp.418-425
    • /
    • 2020
  • In this study soft computing techniques including, Artificial Neural Network (ANN) and Adaptive Neuro-Fuzzy Inference System (ANFIS) were investigated for the prediction of Cr(VI) transport efficiency by novel Polymer Inclusion Membranes (PIMs). Transport experiments carried out by varying parameters such as time, film thickness, carrier type, carier rate, plasticizer type, and plasticizer rate. The predictive performance of ANN and ANFIS model was evaluated by using statistical performance criteria such as Root Mean Standard Error (RMSE), Mean Absolute Error (MAE), and Coefficient of Determination (R2). Moreover, Sensitivity Analysis (SA) was carried out to investigate the effect of each input on PIMs Cr(VI) removal efficiency. The proposed ANN model presented reliable and valid results, followed by ANFIS model results. RMSE and MAE values were 0.00556, 0.00163 for ANN and 0.00924, 0.00493 for ANFIS model in the prediction of Cr(VI) removal efficiency on testing data sets. The R2 values were 0.973 and 0.867 on testing data sets by ANN and ANFIS, respectively. Results show that the ANN-based prediction model performed better than ANFIS. SA demonstrated that time; film thickness; carrier type and plasticizer type are major operating parameters having 33.61%, 26.85%, 21.07% and 8.917% contribution, respectively.

Feasibility Study of Environmental and Geographical Data Transfer (EGDT) Device for Wide-Area Environmental Sampling in Undeclared Areas

  • Seungil Ha;Dalhyeon Ryu;Giyoon Kim;Myungsoo Kim
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.22 no.2
    • /
    • pp.145-157
    • /
    • 2024
  • Undeclared nuclear activities are challenging given the lack of information from the sites involved in such activities. Wide-area environmental sampling (WAES) can be an effective method to detect undeclared nuclear activities. However, it is crucial to address the potential risks during the WAES, including sample tampering or extortions. Therefore, tracking and monitoring of various on-site data is imperative to accurately interpret the status of samples and workers throughout the WAES process. 'Environmental and Geographical Data Transfer (EGDT)' was developed for the real-time monitoring of integrated on-site data. EGDT module is equipped with various sensors and can be attached to a worker's uniform or a sample storage box. This study demonstrated the technical effectiveness of EGDT by exploring three experimental methodologies for feasibility assessment. Compared to the Normal Operation case, the inference of the Sample Extortion case was predominantly based on changes in lux and dose rate. The inference of the Out-of-Work-Area case primarily relied on changes in dose rate and acceleration. Finally, the preliminary evaluation of the performance of the developed prototype was conducted, and a foundation was established for enhancing the application in the WAES process.

Variable Control in Inductive Inference for Engineering Education (공학교육에서 귀납법 추론을 위한 변수 통제)

  • Hwang, Un Hak
    • Journal of Practical Engineering Education
    • /
    • v.6 no.1
    • /
    • pp.1-7
    • /
    • 2014
  • The variable control in the inductive inference for the confirmation and verification when the experimental data are collected is studied by applying the principle of probability inference. The control in engineering experiments is to protect any effect by of intervening variable except primary independent variable on the dependent variable. By the special condition the possibility for developing a phenomenon will be maximized; otherwise, by the extraneous condition the possibility for developing a phenomenon will be minimized. By doing so, the control may provide insurance for the causal relationship between the certain prior event (independent variable) and the post-event (the dependent variable). Some experiments by using both elliptical trainer and tread mill under the variable control are performed in order to find the relations between the energy expenditure, the respiratory exchange ratio (RER), and the heart rate (HR) against the exercise speed.

Applying the ANFIS to the Analysis of Rain and Dark Effects on the Saturation Headways at Signalized Intersections (강우 및 밝기에 따른 신호교차로 포화차두시간 분석에의 적응 뉴로-퍼지 적용)

  • Kim, Kyung Whan;Chung, Jae Whan;Kim, Daehyon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4D
    • /
    • pp.573-580
    • /
    • 2006
  • The Saturation headway is a major parameter in estimating the intersection capacity and setting the signal timing. But Existing algorithms are still far from being robust in dealing with factors related to the variation of saturation headways at signalized intersections. So this study apply the fuzzy inference system using ANFIS. The ANFIS provides a method for the fuzzy modeling procedure to learn information about a data set, in order to compute the membership function parameters that best allow the associated fuzzy inference system to track the given input/output data. The climate conditions and the degree of brightness were chosen as the input variables when the rate of heavy vehicles is 10-25 %. These factors have the uncertain nature in quantification, which is the reason why these are chosen as the fuzzy variables. A neuro-fuzzy inference model to estimate saturation headways at signalized intersections was constructed in this study. Evaluating the model using the statistics of $R^2$, MAE and MSE, it was shown that the explainability of the model was very high, the values of the statistics being 0.993, 0.0289, 0.0173 respectively.

A Study on the Consonant Classification Using Fuzzy Inference (퍼지추론을 이용한 한국어 자음분류에 관한 연구)

  • 박경식
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1992.06a
    • /
    • pp.71-75
    • /
    • 1992
  • This paper proposes algorithm in order to classify Korean consonant phonemes same as polosives, fricatives affricates into la sounds, glottalized sounds, aspirated sounds. This three kinds of sounds are one of distinctive characters of the Korean language which don't eist in language same as English. This is thesis on classfication of 14 Korean consonants(k, t, p, s, c, k', t', p', s', c', kh, ph, ch) as a previous stage for Korean phone recognition. As feature sets for classification, LPC cepstral analysis. The eperiments are two stages. First, using short-time speech signal analysis and Mahalanobis distance, consonant segments are detected from original speech signal, then the consonants are classified by fuzzy inference. As the results of computer simulations, the classification rate of the speech data was come to 93.75%.

  • PDF

Comparing Feature Selection Methods in Spam Mail Filtering

  • Kim, Jong-Wan;Kang, Sin-Jae
    • Proceedings of the Korea Society of Information Technology Applications Conference
    • /
    • 2005.11a
    • /
    • pp.17-20
    • /
    • 2005
  • In this work, we compared several feature selection methods in the field of spam mail filtering. The proposed fuzzy inference method outperforms information gain and chi squared test methods as a feature selection method in terms of error rate. In the case of junk mails, since the mail body has little text information, it provides insufficient hints to distinguish spam mails from legitimate ones. To address this problem, we follow hyperlinks contained in the email body, fetch contents of a remote web page, and extract hints from both original email body and fetched web pages. A two-phase approach is applied to filter spam mails in which definite hint is used first, and then less definite textual information is used. In our experiment, the proposed two-phase method achieved an improvement of recall by 32.4% on the average over the $1^{st}$ phase or the $2^{nd}$ phase only works.

  • PDF

A Study on Prediction Techniques through Machine Learning of Real-time Solar Radiation in Jeju (제주 실시간 일사량의 기계학습 예측 기법 연구)

  • Lee, Young-Mi;Bae, Joo-Hyun;Park, Jeong-keun
    • Journal of Environmental Science International
    • /
    • v.26 no.4
    • /
    • pp.521-527
    • /
    • 2017
  • Solar radiation forecasts are important for predicting the amount of ice on road and the potential solar energy. In an attempt to improve solar radiation predictability in Jeju, we conducted machine learning with various data mining techniques such as tree models, conditional inference tree, random forest, support vector machines and logistic regression. To validate machine learning models, the results from the simulation was compared with the solar radiation data observed over Jeju observation site. According to the model assesment, it can be seen that the solar radiation prediction using random forest is the most effective method. The error rate proposed by random forest data mining is 17%.

A Plasma-Etching Process Modeling Via a Polynomial Neural Network

  • Kim, Dong-Won;Kim, Byung-Whan;Park, Gwi-Tae
    • ETRI Journal
    • /
    • v.26 no.4
    • /
    • pp.297-306
    • /
    • 2004
  • A plasma is a collection of charged particles and on average is electrically neutral. In fabricating integrated circuits, plasma etching is a key means to transfer a photoresist pattern into an underlayer material. To construct a predictive model of plasma-etching processes, a polynomial neural network (PNN) is applied. This process was characterized by a full factorial experiment, and two attributes modeled are its etch rate and DC bias. According to the number of input variables and type of polynomials to each node, the prediction performance of the PNN was optimized. The various performances of the PNN in diverse environments were compared to three types of statistical regression models and the adaptive network fuzzy inference system (ANFIS). As the demonstrated high-prediction ability in the simulation results shows, the PNN is efficient and much more accurate from the point of view of approximation and prediction abilities.

  • PDF