• 제목/요약/키워드: inference performance

검색결과 749건 처리시간 0.023초

유전자 알고리즘과 하중값을 이용한 퍼지 시스템의 최적화 (Optimization of Fuzzy Systems by Means of GA and Weighting Factor)

  • 박병준;오성권;안태천;김현기
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권6호
    • /
    • pp.789-799
    • /
    • 1999
  • In this paper, the optimization of fuzzy inference systems is proposed for fuzzy model of nonlinear systems. A fuzzy model needs to be identified and optimized by means of the definite and systematic methods, because a fuzzy model is primarily acquired by expert's experience. The proposed rule-based fuzzy model implements system structure and parameter identification using the HCM(Hard C-mean) clustering method, genetic algorithms and fuzzy inference method. Two types of inference methods of a fuzzy model are the simplified inference and linear inference. in this paper, nonlinear systems are expressed using the identification of structure such as input variables and the division of fuzzy input subspaces, and the identification of parameters of a fuzzy model. To identify premise parameters of fuzzy model, the genetic algorithms is used and the standard least square method with the gaussian elimination method is utilized for the identification of optimum consequence parameters of fuzzy model. Also, the performance index with weighting factor is proposed to achieve a balance between the performance results of fuzzy model produced for the training and testing data set, and it leads to enhance approximation and predictive performance of fuzzy system. Time series data for gas furnace and sewage treatment process are used to evaluate the performance of the proposed model.

  • PDF

퍼지 추론 방법을 이용한 퍼지 동정과 유전자 알고리즘에 의한 이의 최적화 (Fuzzy Identification by means of Fuzzy Inference Method and its Optimization by GA)

  • 박병준;박춘성;안태천;오성권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 B
    • /
    • pp.563-565
    • /
    • 1998
  • In this paper, we are proposed optimization method of fuzzy model in order to complex and nonlinear system. In the fuzzy modeling, a premise identification is very important to describe the charateristics of a given unknown system. Then, the proposed fuzzy model implements system structure and parameter identification, using the fuzzy inference method and genetic algorithms. Inference method for fuzzy model presented in our paper include the simplified inference and linear inference. Time series data for gas furance and sewage treatment process are used to evaluate the performance of the proposed model. Also, the performance index with weighted value is proposed to achieve a balance between the results of performance for the training and testing data.

  • PDF

다기능 레이더의 추적 성능 개선을 위한 퍼지 추론 시스템 기반 임무 우선 순위 선정 기법 연구 (A Study of Fuzzy Inference System Based Task Prioritizations for the Improvement of Tracking Performance in Multi-Function Radar)

  • 김현주;박준영;김동환;김선주
    • 한국전자파학회논문지
    • /
    • 제24권2호
    • /
    • pp.198-206
    • /
    • 2013
  • 본 논문에서는 다기능 레이더의 추적 성능 개선을 위해 임무 우선 순위 선정을 위한 퍼지 추론 시스템 기반의 기법을 제안하였다. 제안한 기법은 추적 임무 수행 시 우선 순위 결정 트리를 구성하고, 퍼지 집합으로 추적 안정도, 위협도, 접근성을 선정하고, 퍼지 규칙을 통한 추적 임무의 우선 순위를 얻는 방식이다. 우선 순위를 높게 책정할 경우, 추적 주기를 변화시켜 추적의 정확도를 높일 수 있도록 설계하였다. 추적 성능 개선 효과를 입증하기 위해 기동 특성이 뚜렷한 표적 궤적을 생성하고, 제안된 기법을 적용한 경우와 적용하지 않은 경우를 시뮬레이션으로 비교 분석하였다.

Preliminary Test of Adaptive Neuro-Fuzzy Inference System Controller for Spacecraft Attitude Control

  • Kim, Sung-Woo;Park, Sang-Young;Park, Chan-Deok
    • Journal of Astronomy and Space Sciences
    • /
    • 제29권4호
    • /
    • pp.389-395
    • /
    • 2012
  • The problem of spacecraft attitude control is solved using an adaptive neuro-fuzzy inference system (ANFIS). An ANFIS produces a control signal for one of the three axes of a spacecraft's body frame, so in total three ANFISs are constructed for 3-axis attitude control. The fuzzy inference system of the ANFIS is initialized using a subtractive clustering method. The ANFIS is trained by a hybrid learning algorithm using the data obtained from attitude control simulations using state-dependent Riccati equation controller. The training data set for each axis is composed of state errors for 3 axes (roll, pitch, and yaw) and a control signal for one of the 3 axes. The stability region of the ANFIS controller is estimated numerically based on Lyapunov stability theory using a numerical method to calculate Jacobian matrix. To measure the performance of the ANFIS controller, root mean square error and correlation factor are used as performance indicators. The performance is tested on two ANFIS controllers trained in different conditions. The test results show that the performance indicators are proper in the sense that the ANFIS controller with the larger stability region provides better performance according to the performance indicators.

Experiment on Intermediate Feature Coding for Object Detection and Segmentation

  • Jeong, Min Hyuk;Jin, Hoe-Yong;Kim, Sang-Kyun;Lee, Heekyung;Choo, Hyon-Gon;Lim, Hanshin;Seo, Jeongil
    • 방송공학회논문지
    • /
    • 제25권7호
    • /
    • pp.1081-1094
    • /
    • 2020
  • With the recent development of deep learning, most computer vision-related tasks are being solved with deep learning-based network technologies such as CNN and RNN. Computer vision tasks such as object detection or object segmentation use intermediate features extracted from the same backbone such as Resnet or FPN for training and inference for object detection and segmentation. In this paper, an experiment was conducted to find out the compression efficiency and the effect of encoding on task inference performance when the features extracted in the intermediate stage of CNN are encoded. The feature map that combines the features of 256 channels into one image and the original image were encoded in HEVC to compare and analyze the inference performance for object detection and segmentation. Since the intermediate feature map encodes the five levels of feature maps (P2 to P6), the image size and resolution are increased compared to the original image. However, when the degree of compression is weakened, the use of feature maps yields similar or better inference results to the inference performance of the original image.

빠른 추론을 위한 퍼지 참조표에 관한 연구 (A study on the fuzzy look-up table for fast inference)

  • 서동욱;안상철;권욱현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.704-709
    • /
    • 1993
  • In this paper, a method of using a look-up table for a fuzzy logic controller is proposed. A look-up table is designed for a fast inference. An algorithm for an inference is developed with a view to decrease execution time. The performance of the developed fuzzy controller is compared with that of the traditional one.

  • PDF

Performance analysis of local exit for distributed deep neural networks over cloud and edge computing

  • Lee, Changsik;Hong, Seungwoo;Hong, Sungback;Kim, Taeyeon
    • ETRI Journal
    • /
    • 제42권5호
    • /
    • pp.658-668
    • /
    • 2020
  • In edge computing, most procedures, including data collection, data processing, and service provision, are handled at edge nodes and not in the central cloud. This decreases the processing burden on the central cloud, enabling fast responses to end-device service requests in addition to reducing bandwidth consumption. However, edge nodes have restricted computing, storage, and energy resources to support computation-intensive tasks such as processing deep neural network (DNN) inference. In this study, we analyze the effect of models with single and multiple local exits on DNN inference in an edge-computing environment. Our test results show that a single-exit model performs better with respect to the number of local exited samples, inference accuracy, and inference latency than a multi-exit model at all exit points. These results signify that higher accuracy can be achieved with less computation when a single-exit model is adopted. In edge computing infrastructure, it is therefore more efficient to adopt a DNN model with only one or a few exit points to provide a fast and reliable inference service.

Parallel Fuzzy Inference Method for Large Volumes of Satellite Images

  • Lee, Sang-Gu
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제1권1호
    • /
    • pp.119-124
    • /
    • 2001
  • In this pattern recognition on the large volumes of remote sensing satellite images, the inference time is much increased. In the case of the remote sensing data [5] having 4 wavebands, the 778 training patterns are learned. Each land cover pattern is classified by using 159, 900 patterns including the trained patterns. For the fuzzy classification, the 778 fuzzy rules are generated. Each fuzzy rule has 4 fuzzy variables in the condition part. Therefore, high performance parallel fuzzy inference system is needed. In this paper, we propose a novel parallel fuzzy inference system on T3E parallel computer. In this, fuzzy rules are distributed and executed simultaneously. The ONE_To_ALL algorithm is used to broadcast the fuzzy input to the all nodes. The results of the MIN/MAX operations are transferred to the output processor by the ALL_TO_ONE algorithm. By parallel processing of the fuzzy rules, the parallel fuzzy inference algorithm extracts match parallelism and achieves a good speed factor. This system can be used in a large expert system that ha many inference variables in the condition and the consequent part.

  • PDF

퍼지 로직 시스템을 이용한 항공기 가스터빈 엔진 오류 검출에 대한 연구 (Fault Diagnosis in Gas Turbine Engine Using Fuzzy Inference Logic)

  • 모은종;지민석;김진수;이강웅
    • 제어로봇시스템학회논문지
    • /
    • 제14권1호
    • /
    • pp.49-53
    • /
    • 2008
  • A fuzzy inference logic system is proposed for gas turbine engine fault isolation. The gas path measurements used for fault isolation are exhaust gas temperature, low and high rotor speed, and fuel flow. The fuzzy inference logic uses rules developed from a model of performance influence coefficients to isolate engine faults while accounting for uncertainty in gas path measurements. Inputs to the fuzzy inference logic system are measurement deviations of gas path parameters which are transferred directly from the ECM(Engine Control Monitoring) program and outputs are engine module faults. The proposed fuzzy inference logic system is tested using simulated data developed from the ECM trend plot reports and the results show that the proposed fuzzy inference logic system isolates module faults with high accuracy rate in the environment of high level of uncertainty.

RDF 스키마 함의 규칙 적용 순서를 이용한 RDFS 추론 엔진의 최적화 (An Optimization Technique for RDFS Inference the Applied Order of RDF Schema Entailment Rules)

  • 김기성;유상원;이태휘;김형주
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제33권2호
    • /
    • pp.151-162
    • /
    • 2006
  • W3C의 권고안인 RDF Semantics는 RDFS 추론에 사용할 RDFS 함의 규칙을 제안하였다. 널리 사용되고 있는 RDF 저장소 시스템인 Sesame는 전방향 추론 방식을 사용하여 RDBMS 기반 RDFS 추론을 지원한다. Sesame의 전방향 추론 전략을 사용할 때에는 데이타 저장 시에 추론을 하기 때문에 추론 성능이 데이타 저장 성능에 영향을 미친다. 이런 문제점을 개선하기 위해 본 논문에서는 RDBMS 기반의 전방향 추론 엔진의 성능 향상을 위한 RDFS 함의 규칙 적용 순서를 제안한다. 제안한 규칙 적용 순서는 추론 과정을 대부분의 경우 추론 과정의 반복 없이 한번에 끝낼 수 있도록 하며 완벽한 추론 결과를 보장한다. 또한 앞서 적용한 규칙에 의해 생성된 결과를 추측할 수 있어 추론 과정에서 중복된 결과 생성을 줄일 수 있다. 본 논문에서는 실제 사용하는 RDF 데이타들을 사용하여 Sesame와의 추론 성능을 비교하며 제안한 방법이 RDFS 추론 성능을 향상시킬 수 있음을 보인다.