In Korea, the nosocomial infection control program is not well developed. This situation is created by a lack of interest from medical personnel and the medical payment system. This study identifies current problems and develops a model for nosocomial infection control. The studies of Lee & Kim(1995), Lee (1993) and SENIC project model were used to construct this model. 1. The problems of nosocomial infection control were identified as the following: dis approval by hospital authorities, lack of sources for program direction, lack of overall structure and function in the program, inadequate direct action, lack of education and training, and so on. 2. The problems are reorganized according to the 5 elements of system theory. 3. As a result, the new nosocomial infection control model was developed. The inputs of the model were the elements, resources and boundaries of nosocomial infection. With the new model, each hospital can evaluate their current programs and plan a new program for the better control of nosocomial infection.
A population model of bacterial spot caused by Xanthomonas campestris pv. vesicatoria on hot pepper was developed to predict the primary disease infection date. The model estimated the pathogen population on the surface and within the leaf of the host based on the wetness period and temperature. For successful infection, at least 5,000 cells/ml of the bacterial population were required. Also, wind and rain were necessary according to regression analyses of the monitored data. Bacterial spot on the model is initiated when the pathogen population exceeds $10^{15}cells/g$ within the leaf. The developed model was validated using 94 assessed samples from 2000 to 2007 obtained from monitored fields. Based on the validation study, the predicted initial infection dates varied based on the year rather than the location. Differences in initial infection dates between the model predictions and the monitored data in the field were minimal. For example, predicted infection dates for 7 locations were within the same month as the actual infection dates, 11 locations were within 1 month of the actual infection, and only 3 locations were more than 2 months apart from the actual infection. The predicted infection dates were mapped from 2009 to 2012; 2011 was the most severe year. Although the model was not sensitive enough to predict disease severity of less than 0.1% in the field, our model predicted bacterial spot severity of 1% or more. Therefore, this model can be applied in the field to determine when bacterial spot control is required.
International Journal of Advanced Culture Technology
/
v.12
no.1
/
pp.190-201
/
2024
This study examined the effect of the distance Infection Control Education Program (ICEP), developed based on the ADDIE model, on infection control knowledge, attitude, and performance among care workers in long-term care facilities nationwide. The program, developed based on the ADDIE model, was applied to 173 care workers directly responsible for nursing care of elderly residents in lomg-term care facilities. The distance ICEP for care workers was conducted through the website and lasted 30 minutes for each of the eight topics. To determine the effectiveness of the education, infection control knowledge, attitude, performance, and satisfaction were surveyed before and four weeks after the program. Differences in infection control knowledge, attitude, and performance before and after the distance ICEP were assessed by a t-test. A significant difference was observed in knowledge and infection control performance after the distance ICEP was administered to care workers. In the sub-domains of infection control performance, overall understanding of infection, regular infection control education, infection control by special pathogen (multidrug-resistant bacteria, tuberculosis, tick-borne infectious diseases), and detailed infection control education by infection site (pressure ulcers and urinary tract infections) were significantly improved. Infection control knowledge and performance improved through the distance ICEP applied to care workers. Satisfaction also displayed high scores on most items and indicated that it was helpful for infection control in facilities, confirming the effectiveness of infection control education. Based on the survey of care workers nationwide, the infection education program can be effectively used for care workers in the future.
After transitioning from periodic to model-based control policy for fire blight blossom infection, it is crucial to provide the timing of field application with easy and accurate information. To assess the risk of blossom infection, Maryblyt was employed in 31 sites across apple-producing regions nationwide, including areas prone to fire blight outbreaks, from 2021 to 2023. In 2021 and 2023, two and seven sites experienced Blossom Infection Risk-Infection warning occurrences among 31 sites, respectively. However, in 2022, most of the sites observed Blossom Infection Risk-Infection from April 25 to 28, highlighting the need for blossom infection control. For the comparison between the two model-based control approaches, we established treatment 1, which involved control measures according to the Blossom Infection Risk-Infection warning and treatment 2, aimed at maintaining the Epiphytic Infection Potential below 100. The analysis of control values between these treatments revealed that treatment 2 was more effective in reducing Blossom Infection Risk-Infection and the number of days with Epiphytic Infection Potential above 100, with respective averages of 95.6% and 93.0% over the three years. Since 2022, the implementation of the K-Maryblyt system and the deployment of Automated Weather Stations capable of measuring orchard weather conditions, with an average of 10 stations per major apple fire blight county nationwide, have taken place. These advancements will enable the provision of more accurate and timely information for farmers based on fire blight models in the future.
To preventively control fire blight in apple trees and determine policies regarding field monitoring, the Maryblyt ver. 7.1 model (MARYBLYT) was evaluated in the cities of Chungju, Jecheon, and Eumseong in Korea from 2015 to 2020. The number of blossom infection alerts was the highest in 2020 and the lowest in 2017 and 2018. And the common feature of MARYBLYT blossom infection risks during the flowering period was that the time of BIR-High or BIR-Infection alerts was the same regardless of location. The flowering periods of the trees required to operate the model varied according to the year and geographic location. The model predicts the risk of "Infection" during the flowering periods, and recommends the appropriate times to control blossom infection. In 2020, when flower blight was severe, the difference between the expected date of blossom blight symptoms presented by MARYBLYT and the date of actual symptom detection was only 1-3 days, implying that MARYBLYT is highly accurate. As the model was originally developed based on data obtained from the eastern region of the United States, which has a climate similar to that of Korea, this model can be used in Korea. To improve field utilization, however, the entire flowering period of multiple apple varieties needs to be considered when the model is applied. MARYBLYT is believed to be a useful tool for determining when to control and monitor apple cultivation areas that suffer from serious fire blight problems.
An infection risk model for Phytophthora blight on chili pepper was developed to estimate the first date of disease occurrence in the field. The model consisted of three parts including estimation of zoosporangium formation, soil water content, and amount of active inoculum in soil. Daily weather data on air temperature, relative humidity and rainfall, and the soil texture data of local areas were used to estimate infection risk level that was quantified as the accumulated amount of active inoculum during the prior three days. Based on the analysis on 190 sets of weather and disease data, it was found that the threshold infection risk of 224 could be an appropriate criterion for determining the primary infection date. The 95% confidence interval for the difference between the estimated date of primary infection and the observed date of first disease occurrence was $8{\pm}3$ days. In the model validation tests, the observed dates of first disease occurrence were within the 95% confidence intervals of the estimated dates in the five out of six cases. The sensitivity analyses suggested that the model was more responsive to temperature and soil texture than relative humidity, rainfall, and transplanting date. The infection risk model could be implemented in practice to control Phytophthora blight in chili pepper fields.
Choi, Kyung San;Toro, Francisco del;Tenllado, Francisco;Canto, Tomas;Chung, Bong Nam
The Plant Pathology Journal
/
v.33
no.2
/
pp.206-211
/
2017
The effect of temperature on the rate of systemic infection of potatoes (Solanum tuberosum L. cv. Chu-Baek) by Potato virus Y (PVY) was studied in growth chambers. Systemic infection of PVY was observed only within the temperature range of $16^{\circ}C$ to $32^{\circ}C$. Within this temperature range, the time required for a plant to become infected systemically decreased from 14 days at $20^{\circ}C$ to 5.7 days at $28^{\circ}C$. The estimated lower thermal threshold was $15.6^{\circ}C$ and the thermal constant was 65.6 degree days. A systemic infection model was constructed based on experimental data, using the infection rate (Lactin-2 model) and the infection distribution (three-parameter Weibull function) models, which accurately described the completion rate curves to systemic infection and the cumulative distributions obtained in the PVY-potato system, respectively. Therefore, this model was useful to predict the progress of systemic infections by PVY in potato plants, and to construct the epidemic models.
A logistic model for describing combined effects of both temperature and wetness period on appressorium formation was developed using laboratory data on percent appressorium formation of Colletotrichum acutatum. In addition, the possible use of the logistic model for forecasting infection risks was also evaluated as compared with a first-order linear model. A simplified equilibrium model for enzymatic reactions was applied to obtain a temperature function for asymptote parameter (A) of logistic model. For the position (B) and the rate (k) parameters, a reciprocal model was used to calculate the respective temperature functions. The nonlinear logistic model described successfully the response of appressorium formation to the combined effects of temperature and wetness period. Especially the temperature function for asymptote parameter A reflected the response of upper limit of appressorium formation to temperature, which showed the typical temperature response of enzymatic reactions in the cells. By having both temperature and wetness period as independent variables, the nonlinear logistic model can be used to determine the length of wetness periods required for certain levels of appressorium formation under different temperature conditions. The infection model derived from the nonlinear logistic model can be used to calculate infection risks using hourly temperature and wetness period data monitored by automated weather stations in the fields. Compared with the nonlinear infection model, the linear infection model always predicted a shorter wetness period for appressorium formation, and resulted in significantly under- and over-estimation of response at low and high temperatures, respectively.
Yang, Yeunsoo;Kimm, Heejin;Jee, Sun Ha;Hong, Seok-Hwan;Han, Sang-Kyun
The Korean Journal of Emergency Medical Services
/
v.24
no.1
/
pp.7-24
/
2020
Purpose: Emergency medical service (EMS) personnel are at high risk of spreading infection. In this study, we used the PRECEDE model to identify the knowledge, status, and barriers to infection control among Korean paramedics to provide basic infection control data. Methods: A total of 164 respondents were analyzed for the study. A questionnaire was administered and collected through an online self-response platform. Descriptive analysis, t-test, ANOVA, multiple regression, and logistic regression analyses were performed to determine infection control practices and associated factors using SAS 9.4. To identify the pathways and direct, indirect, total effects based on the PRECEDE model, we used AMOS 26.0. Results: Highly rated self-efficacy (OR 8.82, 95% CI: 3.23-24.09), awareness (OR 6.05, 95% CI: 2.06-17.72), and enabling factors (OR 3.23, 95% CI: 1.18-8.78) led to superior infection control. As a result of the structural model analysis, the highly rated enabling factors and awareness led to superior practice patterns. Conclusion: Practice is related to self-efficacy, awareness, and enabling factors; however, further research is needed to develop strategies for infection control. In particular, institutional arrangements are needed to improve the enabling factors. Improving infection control performance may lead to better infection control and enhanced protection of EMS personnel and patients against infection risks.
Journal of the Korean Society for Industrial and Applied Mathematics
/
v.19
no.2
/
pp.137-170
/
2015
In this paper, we propose and analyze three viral infection models with humoral immunity including an eclipse stage of infected cells. The incidence rate of infection is represented by bilinear incidence and saturated incidence in the first and second models, respectively, while it is given by a more general function in the third one. The neutralization rate of viruses is giv0en by bilinear form in the first two models, while it is given by a general function in the third one. For each model, we have derived two threshold parameters, the basic infection reproduction number which determines whether or not a chronic-infection can be established without humoral immunity and the humoral immune response activation number which determines whether or not a chronic-infection can be established with humoral immunity. By constructing suitable Lyapunov functions we have proven the global asymptotic stability of all equilibria of the models. For the third model, we have established a set of conditions on the threshold parameters and on the general functions which are sufficient for the global stability of the equilibria of the model. We have performed some numerical simulations for the third model with specific forms of the incidence and neutralization rates and have shown that the numerical results are consistent with the theoretical results.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.