• 제목/요약/키워드: inerter system

검색결과 14건 처리시간 0.017초

Optimization of base-isolated structure with negative stiffness tuned inerter damper targeting seismic response reduction

  • Jean Paul Irakoze;Shujin Li;Wuchuan Pu;Patrice Nyangi;Amedee Sibomana
    • Earthquakes and Structures
    • /
    • 제25권6호
    • /
    • pp.399-415
    • /
    • 2023
  • In this study, we investigate the use of a negative stiffness tuned inerter damper system to improve the performance of a base-isolated structure. The negative stiffness tuned inerter damper system consists of a tuned inerter damper connected in parallel with a negative stiffness element. To find the optimal parameters for the base-isolated structure with negative stiffness tuned inerter damper system, we develop an optimization method based on performance criteria. The objective of the optimization is to minimize the superstructure acceleration response ratio, while ensuring that the base displacement response ratio remains below a specified target value. We evaluate the proposed method by conducting numerical analyses on an eight-story building. The structure is modeled using both a simplified 3-degree-of-freedom system and a more detailed story-by-story shear-beam model. Lastly, a comparative analysis using time history analysis is performed to compare the performance of the base-isolated structure with negative stiffness tuned inerter damper system with that of the base-isolated structure and base-isolated structure with tuned inerter damper systems. The results obtained from the comparative analysis show that the negative stiffness tuned inerter damper system outperforms the tuned inerter damper system in reducing the dynamic seismic response of the base-isolated structure. Overall, this study demonstrates that the negative stiffness tuned inerter damper system can effectively enhance the performance of base-isolated structures, providing improved seismic response reduction compared to other systems.

Vibration control performance of particle tuned mass inerter system

  • Zheng Lu;Deyu Yan;Chaojie Zhou;Ruifu Zhang
    • Structural Engineering and Mechanics
    • /
    • 제89권4호
    • /
    • pp.383-397
    • /
    • 2024
  • To improve the vibration control performance and applicability of traditional particle tuned mass damper (PTMD) and realize the significant characteristic of lightweight design, this study proposes a novel particle tuned mass inerter system (PTMIS) by introducing inerter system (IS) to the PTMD. In the study, the motion equation of single degree of freedom (SDOF) structure attached with PTMIS is established first, then the variation law of the system's vibration reduction performance (VRP) is discussed through parameter analysis, and it is compared with the PTMD to analyze its VRP advantages. Finally, its vibration reduction (VR) mechanism from the perspective of core control force and energy analysis is explored, and its cavity relative displacement from the application perspective is analyzed. The results show that the PTMIS can remarkably improve the vibration control effectiveness of the PTMD. The reason is that the inerter can store energy and transfer the energy to the cavity and particles, which further stimulates the interaction between the two parts, thereby improving the nonlinear energy consumption effectiveness. Also, the IS can amplify the damping element's energy dissipation efficiency. In addition, the PTMIS can effectively reduce the working stroke of the PTMD, and through the analysis of the lightweight characteristics of the PTMIS, it is found that its lightweight advantage can reach nearly 100%.

Performance evaluation of inerter-based damping devices for structural vibration control of stay cables

  • Huang, Zhiwen;Hua, Xugang;Chen, Zhengqing;Niu, Huawei
    • Smart Structures and Systems
    • /
    • 제23권6호
    • /
    • pp.615-626
    • /
    • 2019
  • Inerter-based damping devices (IBBDs), which consist of inerter, spring and viscous damper, have been extensively investigated in vehicle suspension systems and demonstrated to be more effective than the traditional control devices with spring and viscous damper only. In the present study, the control performance on cable vibration reduction was studied for four different inerter-based damping devices, namely the parallel-connected viscous mass damper (PVMD), series-connected viscous mass damper (SVMD), tuned inerter dampers (TID) and tuned viscous mass damper (TVMD). Firstly the mechanism of the ball screw inerter is introduced. Then the state-space formulation of the cable-TID system is derived as an example for the cable-IBBDs system. Based on the complex modal analysis, single-mode cable vibration control analysis is conducted for PVMD, SVMD, TID and TVMD, and their optimal parameters and the maximum attainable damping ratios of the cable/damper system are obtained for several specified damper locations and modes in combination by the Nelder-Mead simplex algorithm. Lastly, optimal design of PVMD is developed for multi-mode vibration control of cable, and the results of damping ratio analysis are validated through the forced vibration analysis in a case study by numerical simulation. The results show that all the four inerter-based damping devices significantly outperform the viscous damper for single-mode vibration control. In the case of multi-mode vibration control, PVMD can provide more damping to the first four modes of cable than the viscous damper does, and their maximum control forces under resonant frequency of harmonic forced vibration are nearly the same. The results of this study clearly demonstrate the effectiveness and advantages of PVMD in cable vibration control.

High performance active tuned mass damper inerter for structures under the ground acceleration

  • Li, Chunxiang;Cao, Liyuan
    • Earthquakes and Structures
    • /
    • 제16권2호
    • /
    • pp.149-163
    • /
    • 2019
  • By integrating an active tuned mass damper (ATMD) and an inerter, the ATMDI has been proposed to attenuate undesirable oscillations of structures under the ground acceleration. Employing the mode generalized system, the dynamic magnification factors (DMF) of the structure-ATMDI system are formulated. The criterion can then be defined as the minimization of maximum values of the DMF of the controlled structure for optimum searching. By resorting to the defined criterion and the particle swarm optimization (PSO), the effects of varying the crucial parameters on the performance of ATMDI have been scrutinized in order to probe into its superiority. Furthermore, the results of both ATMD and tuned mass dampers inerter (TMDI) are included into consideration for comparing. Results corroborate that the ATMDI outperforms both ATMD and TMDI in terms of the effectiveness and robustness. Especially, the ATMDI may greatly reduce the demand on both the mass ratio and inerter mass ratio, thus being capable of further miniaturizing both the ATMD and TMDI. Likewise the miniaturized ATMDI still keeps nearly the same stroke as the TMDI with a larger mass ratio. Hence, the ATMDI is deemed to be a high performance control device with the miniaturization and suitable for super-tall buildings.

A negative stiffness inerter system (NSIS) for earthquake protection purposes

  • Zhao, Zhipeng;Chen, Qingjun;Zhang, Ruifu;Jiang, Yiyao;Pan, Chao
    • Smart Structures and Systems
    • /
    • 제26권4호
    • /
    • pp.481-493
    • /
    • 2020
  • The negative stiffness spring and inerter are both characterized by the negative stiffness effect in the force-displacement relationship, potentially yielding an amplifying mechanism for dashpot deformation by being incorporated with a series tuning spring. However, resisting forces of the two mechanical elements are dominant in different frequency domains, thus leading to necessary complementarity in terms of vibration control and the amplifying benefit. Inspired by this, this study proposes a Negative Stiffness Inerter System (NSIS) as an earthquake protection system and developed analytical design formulae by fully utilizing its advantageous features. The NSIS is composed of a sub-configuration of a negative stiffness spring and an inerter in parallel, connected to a tuning spring in series. First, closed-form displacement responses are derived for the NSIS structure, and a stability analysis is conducted to limit the feasible domains of NSIS parameters. Then, the dual advantageous features of displacement reduction and the dashpot deformation amplification effect are revealed and clarified in a parametric analysis, stimulating the establishment of a displacement-based optimal design framework, correspondingly yielding the design formulae in analytical form. Finally, a series of examples are illustrated to validate the derived formulae. In this study, it is confirmed that the synergistic incorporation of the negative stiffness spring and the inerter has significant energy dissipation efficiency in a wide frequency band and an enhanced control effect in terms of the displacement and shear force responses. The developed displacement-based design strategy is suitable to utilize the dual benefits of the NSIS, which can be accurately implemented by the analytical design formulae to satisfy the target vibration control with increased energy dissipation efficiency.

Performance enhancement of base-isolated structures on soft foundation based on smart material-inerter synergism

  • Feng Wang;Liyuan Cao;Chunxiang Li
    • Earthquakes and Structures
    • /
    • 제27권1호
    • /
    • pp.1-15
    • /
    • 2024
  • In order to enhance the seismic performance of base-isolated structures on soft foundations, the hybrid system of base-isolated system (BIS) and shape memory alloy inerter (SMAI), referred to as BIS+SMAI, is for the first time here proposed. Considering the nonlinear hysteretic relationships of both the isolation layer and SMA, and soil-structure interaction (SSI), the equivalent linearized state space equation is established of the structure-BIS+SMAI system. The displacement variance based on the H2 norm is then formulated for the structure with BIS+SMAI. Employing the particle swarm optimization, the optimization design methodology of BIS+SMAI is presented in the frequency domain. The evolvement rules of BIS+SMAI in the effectiveness, robustness, SMA driving force, inertia force, stroke, and damping enhancement effect are revealed in the frequency domain through changing the inerter-mass ratio, structural height, aspect ratio, and relative stiffness ratio between the soil and structure. Meanwhile, the validation of BIS+SMAI is conducted using real earthquake records. Results demonstrate that BIS+SMAI can effectively reduce the isolation layer displacement. The inerter can significantly increase the hysteretic displacement of SMA and thus enhance its energy dissipation capacity, implying that BIS+SMAI has better effectiveness than BIS+SMA. Although BIS+SMAI and BIS+ tuned inerter damper (TID) have practically the same effectiveness, BIS+SMAI has the lower optimum damping, significantly smaller inertia force, and higher robustness to perturbations of the optimum parameters. Therefore, BIS+SMAI can be used as a more engineering realizable hybrid system for enhancing the performance of base-isolated structures in soft soil areas.

Input energy spectra and energy characteristics of the hysteretic nonlinear structure with an inerter system

  • Wang, Yanchao;Chen, Qingjun;Zhao, Zhipeng;Hu, Xiuyan
    • Structural Engineering and Mechanics
    • /
    • 제76권6호
    • /
    • pp.709-724
    • /
    • 2020
  • The typical inerter system, the tuned viscous mass damper (TVMD), has been proven to be efficient. It is characterized by an energy-dissipation-enhancement effect, whereby the dashpot deformation of TVMD can be amplified for enhanced energy dissipation efficiency. However, existing studies related to TVMD have mainly been performed on elastic structures, so the working mechanism remains unclear for nonlinear structures. To deal with this, an energy-spectrum analysis framework is developed systematically for classic bilinear hysteretic structures with TVMD. Considering the soil effect, typical bedrock records are propagated through the soil deposit, for which the designed input energy spectra are proposed by considering the TVMD parameters and structural nonlinear properties. Furthermore, the energy-dissipation-enhancement effect of TVMD is quantitatively evaluated for bilinear hysteretic structures. The results show that the established designed input energy spectra can be employed to evaluate the total energy-dissipation burden for a nonlinear TVMD structure. Particularly, the stiffness of TVMD is the dominant factor in adjusting the total input energy. Compared with the case of elastic structures, the energy-dissipation-enhancement effect of TVMD for nonlinear structures is weakened so that the expected energy-dissipation effect of TVMD is replaced by the accumulated energy dissipation of the primary structure.

2자유도 진동계에 관한 이론적 고찰 및 진동흡진기로의 응용 (Theoretical Investigation of 2DOF Vibrating System and Its Application to Dynamic Vibration Absorber)

  • 장선준;;;정형조
    • 한국전산구조공학회논문집
    • /
    • 제22권4호
    • /
    • pp.371-377
    • /
    • 2009
  • 본 연구에서는 회전 및 병진 자유도를 갖는 2자유도 진동계의 동적 특성을 다루었다. 강체의 관성모멘트를 새로운 기계 요소인 이너터로 모델링한 뒤 동강성법을 이용하여 2자유도 진동계의 등가모델을 구하였다. 이때 이너터의 크기에 따라 진동계의 동적특성이 결정되는 것을 보였다. 2자유도 진동계를 진동 흡진기로서 단일 모우드 소거에 적용하였을 경우의 흡진기 설계방법론을 구하였다. 비감쇠 진동흡진기의 경우 해석적인 방법론을 제시하였고, 하나의 감쇠기가 존재하는 경우 고정점법을 적용한 방법론을 소개하였다. 수치 예를 통해서 제시된 방법론을 검증하였다.

Performance of multiple tuned mass dampers-inerters for structures under harmonic ground acceleration

  • Cao, Liyuan;Li, Chunxiang;Chen, Xu
    • Smart Structures and Systems
    • /
    • 제26권1호
    • /
    • pp.49-61
    • /
    • 2020
  • This paper proposes a novel high performance vibration control device, multiple tuned mass dampers-inerters (MTMDI), to suppress the oscillatory motions of structures. The MTMDI, similar to the MTMD, involves multiple tuned mass damper-inerter (TMDI) units. In order to reveal the basic performance of the MTMDI, it is installed on a single degree-of-freedom (SDOF) structure excited by the ground acceleration, and the dynamic magnification factors (DMF) of the structure-MTMDI system are formulated. The optimization criterion is determined as the minimization of maximum values of the relative displacement's DMF for the controlled structure. Based on the particle swarm optimization (PSO) algorithm to tune the optimum parameters of the MTMDI, its performance has been investigated and evaluated in terms of control effectiveness, strokes, stiffness and damping coefficient, inerter element force, and robustness in frequency domain. Meanwhile, further comparison between the MTMDI with MTMD has been conducted. Numerical results clearly demonstrate the MTMDI outperforms the MTMD in control effectiveness and strokes of mass blocks. Additionally, in the aspects of frequency perturbations on both earthquake excitations and structures, the robustness of the MTMDI is also better than the MTMD.

Rotational inertial double tuned mass damper for human-induced floor vibration control

  • Wang, Pengcheng;Chen, Jun;Han, Ziping
    • Structural Engineering and Mechanics
    • /
    • 제82권3호
    • /
    • pp.283-294
    • /
    • 2022
  • An inerter is a passive mechanical element whose inertance can be thousands of times its own physical mass. This paper discusses the application of an inerter-based passive control system, termed rotational inertial double-tuned mass damper (RIDTMD), to mitigate human-induced floor vibrations. First, the acceleration frequency response function of the floor with an RIDTMD is first derived. It is then employed to determine the optimal design parameters of the RIDTMD using the extended fixed-points technique. Based on a theoretical analysis, design-oriented empirical functions are proposed for the RIDTMD optimal parameters, whose performance for floor vibration control is evaluated by numerical examples, in which three typical human-induced load types are considered: walking, jumping, and bouncing. The results indicate that the applicability and effectiveness of the RIDTMD for human-induced floor vibration control are robust for various load types, load frequencies, and floor natural frequencies. For the same mass ratio, the RIDTMD is better than the TMD in reducing the floor vibration amplitude and improving the effective frequency suppression bandwidth, and for the same vibration suppression effect, the mass of the RIDTMD is much lighter than that of the TMD.