• 제목/요약/키워드: inert materials

검색결과 227건 처리시간 0.026초

광섬유의 인장강도에 미치는 Drawing Condition의 영향 (The Effect of Drawing Conditions on the Tensile Strength of Optical Fiber)

  • 한택상;최상삼
    • 한국세라믹학회지
    • /
    • 제19권1호
    • /
    • pp.44-50
    • /
    • 1982
  • Drawing optical fibers in a graphite furnace is one of the most convenient and economical means of producing optical fiber. Since the flaw formation on optical fiber is mainly due to dust contaminations during drawing and surface corrosion by water vapor penetration through coating layer, the tensile strength of optical fiber drawn in a graphite furnace is greatly inflenced by the drawing conditions. The important factors found in this investigation were preform treatment (fire polishing), furnace interior environment (dust contamination, inert gas flows), primary coating condition (resin curing temperature, coating materials, method, thickness) and fiber pulling condition (furnace temperature, drawing speed, pulling tension). The tensile strength at optimum drawing conditions turned out to be 5 ~ 6 GPa.

  • PDF

$Al_2O_3$ 세라믹의 순도별 미세구멍 가공특성 (The Microhole Machining Characteristic According to Purity of the $Al_2O_3$ Ceramics)

  • 윤혁중;임순재;이동주;한흥삼
    • 한국레이저가공학회지
    • /
    • 제2권3호
    • /
    • pp.32-41
    • /
    • 1999
  • This study is about Jig used in wiring when we make Probecard and Large Scale Intergrated Electronic Circuit. The most universal wiring method is molding with Bond. Polymer film is punched down and adhesives is applied after wiring. Due to shrinkage and modification many problems still have happened in the process of molding. To solve these problems, ceramic plate was introduced in the study. Using Laser, an experiment of microhole treatment on ceramic plate was proceeded. Laser energy, assistance gas, and special features by purity degree were analyzed with the 35W low capacity YAG-Laser. In the condition of energy 0.08J, frequency 20Hz and interval time 200$mutextrm{s}$, about 70${\mu}{\textrm}{m}$ microhole was adequate for the Probecard Jig. In the purity experiment of ceramic materials, high purity ceramic met with good result for microhole. But the price is too high. The shape and size of holes machined combustion gas $O_2$ were better than those in $N_2$ and Ar, the inert gas.

  • PDF

Study on Sol-Gel Prepared Phosphosilicate Glass-Ceramic For Low Temperature Phosphorus Diffusion into Silicon

  • Kim, Young-Sig
    • Transactions on Electrical and Electronic Materials
    • /
    • 제2권2호
    • /
    • pp.32-36
    • /
    • 2001
  • A new solid source for low temperature diffusion into silicon was developed. The source wafer consists of an “active” compound, which is sol-gel prepared phosphosilicate glass-ceramics containing 56% P$_2$O$\sub$5/, embedded in a skeletal foam-like, inert substrate. Phosphorus diffusion from the new solid sources at low temperatures (800-875$^{\circ}C$) produced reprodecible sheet resistances and shallow junctions. From a series of one hour doping runs, the life time of the phosphosilicate source was determined to be over 40 hours. The effective diffusion coefficient of phosphorus into silicon and the corresponding activation energy at 850$^{\circ}C$ were determined to be 7.5${\times}$10$\^$-15/ $\textrm{cm}^2$/sec and ∼3.9 eV, respectively.

  • PDF

불활성가스계 소화약제의 불꽃소화 특성에 관한 연구 (A Study on the Flame Extinguishing Characteristics of Inerting Gaseous Agents)

  • 김성민;신창섭;박재만
    • 한국화재소방학회:학술대회논문집
    • /
    • 한국화재소방학회 2008년도 춘계학술논문발표회 논문집
    • /
    • pp.148-150
    • /
    • 2008
  • 할로겐 화합물 소화약제는 뛰어난 소화능력으로 B급 및 C급 화재에 대한 소화약제로서 가장 널리 사용되었으나 오존층 파괴물질로 규정되어 그 사용이 단계적으로 제한되기 시작하였다. 따라서 이를 대체할 청정소 화약제의 개발이 중요한 필요한 상황이며, 본 연구는 청정소화약제로 사용할 수 있는 불활성가스계 소화약제의 불꽃소화농도와 소염시 화염의 온도변화를 관찰하여 각 소화약제가 가지고 있는 소화특성에 대해 알아보고자 하였다.

  • PDF

입자 핵연료의 SiC/C 다층 도포층의 미세조직 및 극미세 경도 평가 (Microstructure and Nano-hardness of SiC/C Multi-coated Layers on a Particulate Nuclear Fuel)

  • 최용
    • 한국표면공학회지
    • /
    • 제52권6호
    • /
    • pp.321-325
    • /
    • 2019
  • Triso-type coating layers of silicon carbide and graphite on UO2 paticulate nuclear fuel were prepared by using fluidized bed type chemical vapor deposition and self-propagating high temperature synthesis methods to make a coated nuclear fuel of a power plant for hydrogen mass-production. The source and carrier gases were the mixture of methyltrichlorosilane and propane, and inert argon. Chemical analysis and microstructure observation showed that the coated layers were inner graphite, middle silicon carbide and outer graphite. The elastic modulus and nano-hardness of the silicon carbide layer were 503 [GPa] and 36 [GPa], respectively.

Photo-induced Isomerization and Polymerization of (Z,Z)-Muconate Anion in the Gallery Space of [LiAl2(OH)6]+ Layers

  • Rhee, Seog-Woo;Jung, Duk-Young
    • Bulletin of the Korean Chemical Society
    • /
    • 제23권1호
    • /
    • pp.35-40
    • /
    • 2002
  • Photoreaction of guest organic anions in layered organic-inorganic hybrid materials was investigated. The layered hybrids were synthesized by an anion-exchange reaction of $[LiAl_2(OH)_6]Cl{\cdot}yH_2O$ layered double hydroxide with aqueous (Z,Z)- and (E,E)-muconates under inert atmospheric condition, to give new organicinorganic hybrids of $[LiAl_2(OH)_6]_2[(Z,Z)-C_6H_4O_4]{\cdot}zH_2O$ and $[LiAl_2(OH)_6]_2[(E,E)-C_6H_4O_4]{\cdot}H_2O$, respectively. The basal spacings calculated by XRPD of intercalates indicate that muconate anions have almost vertical arrangements against the host $[LiAl_2(OH)_6]^+$ lattices in the interlayer of organic-inorganic hybrid materials. When UV light was irradiated on the suspension of $[LiAl_2(OH)_6]_2[(Z,Z)-C_6H_4O_4]{\cdot}zH_2O$, the (Z,Z)-muconate anions of the gallery space of hybrids were polymerized in the aqueous media while it was isomerized into more stable (E,E)-muconate in the methanollic suspension in the presence of catalytic amount of molecular iodine. All the products were characterized using elemental analysis, TGA, XRPD, FT-IR, $^1H$ NMR and $^{13}C$ CP-MAS NMR.

Aluminum Nitride - Yttrium Aluminum Garnet 분말 특성과 플라즈마 용사 코팅층의 미세조직 (Microstructural Evolution of Aluminum Nitride - Yttrium Aluminum Garnet Composite Coatings by Plasma Spraying from Different Feedstock Powders)

  • 소웅섭;백경호
    • 한국재료학회지
    • /
    • 제21권2호
    • /
    • pp.106-110
    • /
    • 2011
  • A high thermal conductive AlN composite coating is attractive in thermal management applications. In this study, AlN-YAG composite coatings were manufactured by atmospheric plasma spraying from two different powders: spray-dried and plasma-treated. The mixture of both AlN and YAG was first mechanically alloyed and then spray-dried to obtain an agglomerated powder. The spray-dried powder was primarily spherical in shape and composed of an agglomerate of primary particles. The decomposition of AlN was pronounced at elevated temperatures due to the porous nature of the spray-dried powder, and was completely eliminated in nitrogen environment. A highly spherical, dense AlN-YAG composite powder was synthesized by plasma alloying and spheroidization (PAS) in an inert gas environment. The AlN-YAG coatings consisted of irregular-shaped, crystalline AlN particles embedded in amorphous YAG phase, indicating solid deposition of AlN and liquid deposition of YAG. The PAS-processed powder produced a lower-porosity and higher-hardness AlN-YAG coating due to a greater degree of melting in the plasma jet, compared to that of the spray-dried powder. The amorphization of the YAG matrix was evidence of melting degree of feedstock powder in flight because a fully molten YAG droplet formed an amorphous phase during splat quenching.

Nd:YAG 레이저를 이용한 자동차 배터리용 SS41 다층박판 이종두께 T형상 용접 특성 (T-joint Welding Characteristics of Multi-thin Plate Dissimilar Thickness of SS41 of Automobile Battery by using Nd:YAG Laser)

  • 양윤석;황찬연;유영태
    • 한국정밀공학회지
    • /
    • 제29권10호
    • /
    • pp.1078-1088
    • /
    • 2012
  • In this paper, we present research experimental results about the different thickness T-joint welding of the high power continuous wave(CW) Nd:YAG laser for the secondary battery of a vehicle. Although the conventional method used for the secondary battery is a argon TIG welding, we utilize a laser welding to improve Tungsten Inert Gas(TIG) welding's weakness. The laser, which has a couple of advantage such as aspect ratio, low Heat Affected Zone(HAZ), good welding quality and fast productivity utilized in this work is a CW Nd:YAG laser. In order to observe laser welding sections, we used a optical microscope. Through the analysis of the metallographic, hardness, aspect ratio, and heat input, we obtained the desired data in condition of 1800 W laser beam power and 1.8 m/min and 2.0 m/min laser beam travel speeds. In order to compare electric resistances of the argon TIG welding and laser welding, we made an actual battery and the electric resistance of the laser welding is reduced by 40~45% comparing with the argon TIG welding.

Effect of Welding Processes on Corrosion Resistance of UNS S31803 Duplex Stainless Steel

  • Chiu, Liu-Ho;Hsieh, Wen-Chin
    • Corrosion Science and Technology
    • /
    • 제2권1호
    • /
    • pp.36-40
    • /
    • 2003
  • An attractive combination of corrosion resistance and mechanical properties in the temperature range -50 to $250^{\circ}C$ is offered by duplex stainless steel. However, undesirable secondary precipitation phase such as $\sigma$, $\gamma_2$ and $Cr_2N$ may taken place at the cooling stage from the welding processes. Therefore, this paper describes the influence of different welding procedures such as manual metal arc welding (MMA), tungsten inert gas welding (TIG) and vacuum brazing on corrosion resistance of the welded joint for UNS S31803 duplex stainless steel. Microstructure and chemical compositions of the welded joint were examined. The weight loss of specimens immersed in 6% $FeCl_3$ solution at $47.5^{\circ}C$ for 24-hours was determined and used to evaluate the pitting resistance of duplex stainless steel and their welds. The region of heat-affected zone of specimen obtained by the MMA is much wider than that resulted from TIG, therefore, the weight loss of welds by MMA was larger than that of weld by TIG. The weight loss of brazed specimens cooled from slow cooling rate was larger than those of specimens cooled from high cooling rate, because the precipitation of $\sigma$ phase. Beside that, the weight loss of brazed specimen is greater than those of the welded specimens. The galvanic corrosion was observed in brazed duplex stainless steel joints in the chloride solution.

대전류 고속 TIG 용접 특성에 미치는 He 혼합비의 영향 (Effect of Be Mixing Ratio on the Characteristics of TIG Welding with High Current and High Speed)

  • 오동수;김영식;조상명
    • Journal of Welding and Joining
    • /
    • 제23권3호
    • /
    • pp.54-60
    • /
    • 2005
  • Tungsten Inert Gas(TIG) welding is today one of the most popular arc welding process because of its high quality welds and low equipment costs. Even if welding productivity increases with welding speed and current, this strategy is limited by the appearance of defects such as undercut and humping bead due to the depressed molten metal. The purpose of this study investigates the effect of He mixing ratio on the characteristics with high current and speed in TIG welding. The conclusions obtained permit to explain the arc start characteristics quantitatively and the maximum welding speed on stable bead formation with He mixing ratio for high current and speed TIG welding observed in experiments. Also through the relation of the maximum arc pressure and surface depression depth at high current and speed TIG welding, it made clear the mechanism of unstable bead formation.